
A body is moving with a velocity of $10\,m{s^{ - 1}}$ burst into part $A$ and $B$ of masses $6\,kg$ and $1\,kg$.If part A continues to move in the original direction with $12.5\,m{s^{ - 1}}$ ,the velocity of part $B$ is-
A. $ + 5\,m{s^{ - 1}}$
B. $ - 5\,m{s^{ - 1}}$
C. $ + 2.5\,m{s^{ - 1}}$
D. $ - 2.5\,m{s^{ - 1}}$
Answer
433.8k+ views
Hint:The relationship between speed, mass, and direction is defined by momentum in physics. It also applies to the force that is used to stop and keep moving objects. If an object has sufficient energy, it may exert considerable force.
Complete step by step answer:
The linear momentum of a particle is defined as the product of its mass and velocity. It's a vector number, and its direction is the same as the particle's velocity. The symbol for linear momentum is \[p\]. If \[m\] is the mass of a particle moving at $v$ , then \[p = mv\] is the linear momentum of the particle.
So, according to the question,
Initial velocity of the object was $u=10\,m{s^{ - 1}}$.
Mass of $A$ was ${m_A}=6\,kg$
Mass of $B$ was ${m_B}=1\,kg$
Final velocity of $A$ was ${v_A}=12.5\,m{s^{ - 1}}$
Now, we know that
$({m_A}+{m_B})u = {m_A}\,{v_A} + {m_B}\,{v_B}$
$ \Rightarrow \left( {6 + 1} \right)10 = 6 \times 12.5 + 1 \times {v_B}$
$ \Rightarrow 70 = 75 + {v_B}$
$\therefore {v_B} = - 5\,m/s$
So, the velocity of part $B$ is $ - 5\,m/s$ as the direction is opposite to the original.
Hence the correct option is B.
Note: The product of the total mass \[M\] of the system and the velocity of the centre of mass gives the linear momentum of a system of particles. This expression shows that the linear momentum of a system of particles is conserved when the net external force acting on it is zero.
Complete step by step answer:
The linear momentum of a particle is defined as the product of its mass and velocity. It's a vector number, and its direction is the same as the particle's velocity. The symbol for linear momentum is \[p\]. If \[m\] is the mass of a particle moving at $v$ , then \[p = mv\] is the linear momentum of the particle.
So, according to the question,
Initial velocity of the object was $u=10\,m{s^{ - 1}}$.
Mass of $A$ was ${m_A}=6\,kg$
Mass of $B$ was ${m_B}=1\,kg$
Final velocity of $A$ was ${v_A}=12.5\,m{s^{ - 1}}$
Now, we know that
$({m_A}+{m_B})u = {m_A}\,{v_A} + {m_B}\,{v_B}$
$ \Rightarrow \left( {6 + 1} \right)10 = 6 \times 12.5 + 1 \times {v_B}$
$ \Rightarrow 70 = 75 + {v_B}$
$\therefore {v_B} = - 5\,m/s$
So, the velocity of part $B$ is $ - 5\,m/s$ as the direction is opposite to the original.
Hence the correct option is B.
Note: The product of the total mass \[M\] of the system and the velocity of the centre of mass gives the linear momentum of a system of particles. This expression shows that the linear momentum of a system of particles is conserved when the net external force acting on it is zero.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
