A bicycle can go up a gentle inclination with constant speed where the frictional force of ground pushing the rear wheel is \[{F_2} = 4\,{\text{N}}\] . With what force \[{F_1}\] must the chain pull on the socket wheel if \[{R_1} = 4\,{\text{cm}}\] and \[{R_2} = 30\,{\text{cm}}\] ?
A. \[4\,{\text{N}}\]
B. \[24\,{\text{N}}\]
C. \[140\,{\text{N}}\]
D. \[\dfrac{{35}}{4}\,{\text{N}}\]

Answer
290.7k+ views
Hint: First of all, we will find the individual torques for the two different forces. After that we will equate both the equations as the net torque is zero for a body moving at constant speed. We will manipulate accordingly and obtain the result.
Complete step by step answer:
In the given problem, we are supplied with the following data:
The frictional force of ground pushing the rear wheel is the frictional force of ground pushing the rear wheel is \[4\,{\text{N}}\] .
The radius of the rear socket wheel is \[30\,{\text{cm}}\] .
The radius of the front socket wheel is \[4\,{\text{cm}}\] .
We are asked to find the force \[{F_1}\] , with which the chain pulls on the socket wheel.
To begin with, we have to know that this problem is based on the rolling motion. Again, we can observe that the bicycle is moving up the inclined plane with a speed which is constant. This can be used to use the net force and the net torque is also zero.
First case:
The torque developed due to the force \[{F_1}\] can be expressed with the equation:
\[{\tau _1} = {r_1} \times {F_1}\] …… (1)
Where,
\[{\tau _1}\] indicates the torque developed by the force.
\[{r_1}\] indicates the radius of the smaller socket wheel.
\[{F_1}\] indicates the force with which the chain pulls on the socket wheel.
Second case:
The torque developed due to the force \[{F_2}\] can be expressed with the equation:
\[{\tau _2} = {r_2} \times {F_2}\] …… (2)
Where,
\[{\tau _2}\] indicates the torque developed by the force.
\[{r_2}\] indicates the radius of the smaller socket wheel.
\[{F_2}\] indicates the frictional force.
Since, the net torque is zero, we can write:
\[{\tau _1} = {\tau _2} \\
{r_1} \times {F_1} = {r_2} \times {F_2} \\
\]
\[{F_1} = \dfrac{{{r_2} \times {F_2}}}{{{r_1}}}\] …… (3)
Substituting the required values in the equation (3), we get:
\[
{F_1} = \dfrac{{30 \times 4}}{5} \\
{F_1} = 24\,{\text{N}} \\
\]
Hence, the force with which the chain pulls on the socket wheel is \[24\,{\text{N}}\] .
The correct option is B.
Note:It is important to note that if a rotatable object has a net torque of zero, it will be in rotational equilibrium and will not be able to obtain angular acceleration. Torque is therefore zero when the body is static.
Complete step by step answer:
In the given problem, we are supplied with the following data:
The frictional force of ground pushing the rear wheel is the frictional force of ground pushing the rear wheel is \[4\,{\text{N}}\] .
The radius of the rear socket wheel is \[30\,{\text{cm}}\] .
The radius of the front socket wheel is \[4\,{\text{cm}}\] .
We are asked to find the force \[{F_1}\] , with which the chain pulls on the socket wheel.
To begin with, we have to know that this problem is based on the rolling motion. Again, we can observe that the bicycle is moving up the inclined plane with a speed which is constant. This can be used to use the net force and the net torque is also zero.
First case:
The torque developed due to the force \[{F_1}\] can be expressed with the equation:
\[{\tau _1} = {r_1} \times {F_1}\] …… (1)
Where,
\[{\tau _1}\] indicates the torque developed by the force.
\[{r_1}\] indicates the radius of the smaller socket wheel.
\[{F_1}\] indicates the force with which the chain pulls on the socket wheel.
Second case:
The torque developed due to the force \[{F_2}\] can be expressed with the equation:
\[{\tau _2} = {r_2} \times {F_2}\] …… (2)
Where,
\[{\tau _2}\] indicates the torque developed by the force.
\[{r_2}\] indicates the radius of the smaller socket wheel.
\[{F_2}\] indicates the frictional force.
Since, the net torque is zero, we can write:
\[{\tau _1} = {\tau _2} \\
{r_1} \times {F_1} = {r_2} \times {F_2} \\
\]
\[{F_1} = \dfrac{{{r_2} \times {F_2}}}{{{r_1}}}\] …… (3)
Substituting the required values in the equation (3), we get:
\[
{F_1} = \dfrac{{30 \times 4}}{5} \\
{F_1} = 24\,{\text{N}} \\
\]
Hence, the force with which the chain pulls on the socket wheel is \[24\,{\text{N}}\] .
The correct option is B.
Note:It is important to note that if a rotatable object has a net torque of zero, it will be in rotational equilibrium and will not be able to obtain angular acceleration. Torque is therefore zero when the body is static.
Last updated date: 04th Jun 2023
•
Total views: 290.7k
•
Views today: 2.48k
Recently Updated Pages
Which element possesses the biggest atomic radii A class 11 chemistry JEE_Main

The highly efficient method of obtaining beryllium class 11 chemistry JEE_Main

Which of the following sulphates has the highest solubility class 11 chemistry JEE_Main

Amongst the metal Be Mg Ca and Sr of group 2 of the class 11 chemistry JEE_Main

Which of the following metals is present in the greencolored class 11 chemistry JEE_Main

To prevent magnesium from oxidation in the electrolytic class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
