
A battery is connected to a potentiometer and a balance point is obtained at 84 cm along the wire. When its terminals are connected by a $5 \Omega$ resistor, the balance point changes to 70 cm. Find the new position of the balance point when $5 \Omega$ resistor is changed by $4 \Omega$ resistor.
A. 26.5 cm
B. 52 cm
C. 67.2 cm
D. 83.3 cm
Answer
446.7k+ views
Hint: To solve this problem, use the formula for internal resistance. Substitute the values in the formula of internal resistance for $5 \Omega$ resistor and calculate the internal resistance for it. Then, use the same formula to find the internal resistance for $4 \Omega$ resistor. Substitute the internal resistance obtained above in this equation and find the unknown variable which is the new position of the balance point.
Formula used:
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}R$
Complete answer:
Given: ${l}_{1}= 84 cm$
${l}_{2}= 70 cm$
${R}_{1}= 5 \Omega$
${R}_{2}= 4 \Omega$
The formula for internal resistance is given by,
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}R$
Internal resistance when $5 \Omega$ resistor is connected is given by,
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}{R}_{1}$
Substituting values in above equation we get,
$r= \dfrac {84-70}{70}\times 5$
$\Rightarrow r= \dfrac {14}{70}\times 5$
$\Rightarrow r= 1 \Omega$
Internal resistance when $4 \Omega$ resistor is connected is given by,
$r= \dfrac {{l}_{1}-{l}_{3}}{{l}_{3}}{R}_{2}$
Substituting values in above equation we get,
$1= \dfrac {84-{l}_{3}}{{l}_{3}} \times 4$
$\Rightarrow {l}_{3}=(84-{l}_{3}) \times 4$
$\Rightarrow {l}_{3}= 336 – 4{l}_{3}$
$\Rightarrow 5{l}_{3}= 336$
$\Rightarrow {l}_{3}= \dfrac {336}{5}$
$\Rightarrow {l}_{3}= 67.2 cm$
Hence, when $5 \Omega$ resistor is changed by $4 \Omega$ resistor, the new position of the balance point is 67.2 cm.
So, the correct answer is option C i.e. 67.2 cm.
Note:
Internal resistance is the opposition offered by the cells and batteries to the flow of current flowing in the generation of heat. Internal resistance depends upon the nature of the material of the wire. The potentiometer is an arrangement that can be used to find the unknown value of resistances and the cell’s internal resistance. Potentiometer is also used to determine the unknown values of potential differences.
Formula used:
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}R$
Complete answer:
Given: ${l}_{1}= 84 cm$
${l}_{2}= 70 cm$
${R}_{1}= 5 \Omega$
${R}_{2}= 4 \Omega$
The formula for internal resistance is given by,
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}R$
Internal resistance when $5 \Omega$ resistor is connected is given by,
$r= \dfrac {{l}_{1}-{l}_{2}}{{l}_{2}}{R}_{1}$
Substituting values in above equation we get,
$r= \dfrac {84-70}{70}\times 5$
$\Rightarrow r= \dfrac {14}{70}\times 5$
$\Rightarrow r= 1 \Omega$
Internal resistance when $4 \Omega$ resistor is connected is given by,
$r= \dfrac {{l}_{1}-{l}_{3}}{{l}_{3}}{R}_{2}$
Substituting values in above equation we get,
$1= \dfrac {84-{l}_{3}}{{l}_{3}} \times 4$
$\Rightarrow {l}_{3}=(84-{l}_{3}) \times 4$
$\Rightarrow {l}_{3}= 336 – 4{l}_{3}$
$\Rightarrow 5{l}_{3}= 336$
$\Rightarrow {l}_{3}= \dfrac {336}{5}$
$\Rightarrow {l}_{3}= 67.2 cm$
Hence, when $5 \Omega$ resistor is changed by $4 \Omega$ resistor, the new position of the balance point is 67.2 cm.
So, the correct answer is option C i.e. 67.2 cm.
Note:
Internal resistance is the opposition offered by the cells and batteries to the flow of current flowing in the generation of heat. Internal resistance depends upon the nature of the material of the wire. The potentiometer is an arrangement that can be used to find the unknown value of resistances and the cell’s internal resistance. Potentiometer is also used to determine the unknown values of potential differences.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
