Answer
Verified
388.2k+ views
Hint: The formula that is needed to find the probability is
\[P(R) = \dfrac{{n(R)}}{{n(S)}}\] ,
where \[n(R)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
The probability of two disjoint events \[A\] or \[B\] is given by
\[P(AorB) = P(A) + P(B)\]
Complete step by step answer:
It is given that the bag contains \[4\] red, \[5\] black and \[6\] white balls.
Then the sample space is \[S = \{ R,R,R,R,B,B,B,B,B,W,W,W,W,W,W\} \]
Therefore, the total number of balls in the bag is \[4 + 5 + 6 = 15\]
That is, the total no. of event in the sample \[n(S) = 15\]
To find: Probability of getting a red or white ball.
Let \[R\] be the event of getting a red ball, then the probability of getting a red ball is given by
\[P(R) = \dfrac{{n(R)}}{{n(S)}}\] ,
where \[n(R)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
From the sample space we get, \[n(R) = 4\]
Therefore, \[P(R) = \dfrac{4}{15}\]
Let \[W\] be the event of getting a white ball, then the probability of getting a white ball is given by
\[P(W) = \dfrac{{n(W)}}{{n(S)}}\] ,
where \[n(W)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
Again, from the sample space we get, \[n(W) = 6\]
Therefore, \[P(W) = \dfrac{6}{{15}}\]
Let \[A\] be the event of getting a red or white ball, then the probability of \[A\] is given by
\[P(A) = P(R) + P(W)\]
Therefore, \[P(A) = \dfrac{4}{{15}} + \dfrac{6}{{15}}\]
Simplifying this we will get,
\[ \Rightarrow P(A) = \dfrac{{(4 + 6)}}{{15}}\]
\[ \Rightarrow P(A) = \dfrac{{10}}{{15}}\]
Thus, the probability of getting a red or white ball is \[\dfrac{{10}}{{15}}\]
Note: In this problem both the events are disjoints that is event of getting red ball and event of getting white ball are disjoint event (i.e. There is no intersection between these two events) so we used the formula \[P(AorB) = P(A) + P(B)\] . If the events are not disjoint events, then we have to use the formula \[P(AorB) = P(A) + P(B) - P(AandB)\] where \[P(AandB)\] is intersection between the events \[A\] and \[B\] .
\[P(R) = \dfrac{{n(R)}}{{n(S)}}\] ,
where \[n(R)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
The probability of two disjoint events \[A\] or \[B\] is given by
\[P(AorB) = P(A) + P(B)\]
Complete step by step answer:
It is given that the bag contains \[4\] red, \[5\] black and \[6\] white balls.
Then the sample space is \[S = \{ R,R,R,R,B,B,B,B,B,W,W,W,W,W,W\} \]
Therefore, the total number of balls in the bag is \[4 + 5 + 6 = 15\]
That is, the total no. of event in the sample \[n(S) = 15\]
To find: Probability of getting a red or white ball.
Let \[R\] be the event of getting a red ball, then the probability of getting a red ball is given by
\[P(R) = \dfrac{{n(R)}}{{n(S)}}\] ,
where \[n(R)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
From the sample space we get, \[n(R) = 4\]
Therefore, \[P(R) = \dfrac{4}{15}\]
Let \[W\] be the event of getting a white ball, then the probability of getting a white ball is given by
\[P(W) = \dfrac{{n(W)}}{{n(S)}}\] ,
where \[n(W)\] is no. of favorable outcome and \[n(S)\] is total no. of events in the sample space.
Again, from the sample space we get, \[n(W) = 6\]
Therefore, \[P(W) = \dfrac{6}{{15}}\]
Let \[A\] be the event of getting a red or white ball, then the probability of \[A\] is given by
\[P(A) = P(R) + P(W)\]
Therefore, \[P(A) = \dfrac{4}{{15}} + \dfrac{6}{{15}}\]
Simplifying this we will get,
\[ \Rightarrow P(A) = \dfrac{{(4 + 6)}}{{15}}\]
\[ \Rightarrow P(A) = \dfrac{{10}}{{15}}\]
Thus, the probability of getting a red or white ball is \[\dfrac{{10}}{{15}}\]
Note: In this problem both the events are disjoints that is event of getting red ball and event of getting white ball are disjoint event (i.e. There is no intersection between these two events) so we used the formula \[P(AorB) = P(A) + P(B)\] . If the events are not disjoint events, then we have to use the formula \[P(AorB) = P(A) + P(B) - P(AandB)\] where \[P(AandB)\] is intersection between the events \[A\] and \[B\] .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths