
A, B, C and D are four points such that AB $ = m(2i - 6j + 2k), $ BC $ = i + 2j $ and
CD $ = n( - 6i + 15j - 3k) $ If AB and CD intersect at some point H, then
(This question has multiple correct options)
A. $ m \geqslant \dfrac{1}{2} $
B. $ n \geqslant \dfrac{1}{2} $
C.Area of $ \Delta BCH = \dfrac{1}{{2}}\sqrt 6 $
D.All of these
Answer
504.3k+ views
Hint: Here we will use the different concepts of the solutions of the equations, the cross-product of the vector equation and area of the triangle using the cross product of vectors. Substitute and simplify as per the required solution.
Complete step-by-step answer:
Given that lines AB and CD intersect at the point H and now connect the points C and B.
So, the triangle BCH is formed.
Also,
$ \overrightarrow {AB} = m(2i - 6j + 2k), $
$ \overrightarrow {BC} = i + 2j $ and
$ \overrightarrow {CD} = n( - 6i + 15j - 3k). $
From the above figure, we can say that $ \overrightarrow {HB} = x\overrightarrow {AB} $
Where, “x” lies between zero and one. Such that $ 0 < x < 1 $
Similarly, $ \overrightarrow {CH} = y\overrightarrow {CD} $
Now, in $ \Delta CHB, $
$ \Rightarrow \overrightarrow {CH} + \overrightarrow {HB} = \overrightarrow {CB} $
Place values from the given data –
$ \Rightarrow yn( - 6i + 15j - 3k) + xm(2i - 6j + 2k) = - i - 2j $
Multiply the factors inside the bracket and simplify the above equations –
$ \Rightarrow ( - 6yni + 15ynj - 3ynk) + (2xmi - 6xmj + 2xmk) = - i - 2j $
Make pair of terms with respect to the “i”, “j” and “k” terms –
$ \Rightarrow \underline { - 6yni + 2xmi} + \underline {15ynj - 6xmj} \underline { - 3ynk + 2xmk} = - i - 2j $
Take common the respective terms –
$ \Rightarrow i( - 6ny + 2mx) + j(15yn - 6x) + k( - 3yn + 2xm) = - i - 2j $
Now, compare the respective i,j and k terms on both the sides of the equation –
$
\Rightarrow - 6ny + 2mx = - 1\,{\text{ }}....{\text{ (A)}} \\
\Rightarrow 15yn - 6mx = - 2{\text{ }}....{\text{ (B)}} \\
\Rightarrow ( - 3yn + 2xm) = 0{\text{ }}....{\text{ (C)}} \\
$
Simplify the equations to get the values of the terms “x” and “y”
Solve the equation (c)
$
\Rightarrow ( - 3yn + 2xm) = 0{\text{ }} \\
\Rightarrow 3yn = 2xm\;{\text{ }}....{\text{ (D)}} \\
$
Place the value of the equation (D) in the equation (A)
$ \Rightarrow - 4mx + 2mx = 1\,{\text{ }} $
Simplify the equation –
$
\Rightarrow 2mx = 1\,{\text{ }} \\
\Rightarrow {\text{x = }}\dfrac{1}{{2m}} \\
$
Similarly place the above value in the equation (A)
$ \Rightarrow - 6ny + 2mx = - 1 $
$ \Rightarrow - 6ny + 2m\left( {\dfrac{1}{{2m}}} \right) = - 1 $
Like terms from the multiplicative and the division part cancel each other.
$ \Rightarrow - 6ny + 1 = - 1 $
When the term is moved from one side to another, sign also changes from negative to positive and vice-versa.
$
\Rightarrow - 6ny = - 1 - 1 \\
\Rightarrow - 6ny = - 2 \\
$
Minus sign cancel each other from both the sides of the equation, and make the unknown “y” the subject.
$
\Rightarrow y = \dfrac{2}{{6n}} \\
\Rightarrow y = \dfrac{1}{{3n}} \\
$
Because, we assume $ 0 < x < 1 $ and $ 0 < y < 1 $
$ \Rightarrow 0 < \dfrac{1}{{2m}} < 1{\text{ and }}0 < \dfrac{1}{{3n}} < 1 $
Simplification implies –
$ \Rightarrow m > \dfrac{1}{2}{\text{ and n}} > \dfrac{1}{3}{\text{ }}....{\text{ (i)}} $
Now, the area of $ \left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| $ .... (i)
Now, $ \overrightarrow {HB} = x\overrightarrow {AB} $
$ \overrightarrow {HB} = xm(2i - 6j + 2k), $
Place the values $ \Rightarrow 2mx = 1\,{\text{ }} \Rightarrow {\text{mx = }}\dfrac{1}{2} $
$
\overrightarrow {HB} = \dfrac{1}{2}(2i - 6j + 2k) \\
\overrightarrow {HB} = (i - 3j + k){\text{ }}....{\text{ (ii)}} \\
$
Similarly, $ y\overrightarrow {CD} = yn( - 6i + 15j - 3k) $
Place the values - $ yn = \dfrac{1}{3} $
$
y\overrightarrow {CD} = \dfrac{1}{3}( - 6i + 15j - 3k) \\
y\overrightarrow {CD} = ( - 2i + 5j - k){\text{ }}....{\text{ (iii)}} \\
$
Find the cross-product by using equations (ii) and (iii)
$ \overrightarrow {HB} \times \overrightarrow {CH} = \left| {\begin{array}{*{20}{c}}
i&j&k \\
1&{ - 3}&1 \\
{ - 2}&5&{ - 1}
\end{array}} \right| $
Expand the determinant-
$ \overrightarrow {HB} \times \overrightarrow {CH} = i[( - 3)( - 1) - 5] - j[(1)( - 1) - ( - 2)(1) + k[(1)(5) - ( - 3)( - 2)] $
Simplify the above equation –
$
\overrightarrow {HB} \times \overrightarrow {CH} = i(3 - 5) - j( - 1 + 2) + k(5 - 6) \\
\overrightarrow {HB} \times \overrightarrow {CH} = - 2i - j - k \\
$
Find the magnitude –
$
\left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \left| { - 2i - j - k} \right| \\
\Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{( - 1)}^2}} \\
$
Square of negative terms gives the positive terms-
$ \Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {4 + 1 + 1} = \sqrt 6 $
Now, place the above value in the equation (i)
$
\left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| \\
\Rightarrow \left| {\Delta CHB} \right| = \dfrac{1}{2}(\sqrt 6 ) \\
$
Simplify the above equation –
$ \Rightarrow \left| {\Delta CHB} \right| = \dfrac{{\sqrt 6 }}{2} $
Hence, from the given multiple choices- all the given options are the correct answer.
So, the correct answer is “Option D”.
Note: Always remember the properties of the cross-product and expansion of the determinant and simplify taking care of the positive and the negative sign. Also, remember the square and square-roots and its simplification for the efficient and accurate solution.
Complete step-by-step answer:

Given that lines AB and CD intersect at the point H and now connect the points C and B.
So, the triangle BCH is formed.
Also,
$ \overrightarrow {AB} = m(2i - 6j + 2k), $
$ \overrightarrow {BC} = i + 2j $ and
$ \overrightarrow {CD} = n( - 6i + 15j - 3k). $
From the above figure, we can say that $ \overrightarrow {HB} = x\overrightarrow {AB} $
Where, “x” lies between zero and one. Such that $ 0 < x < 1 $
Similarly, $ \overrightarrow {CH} = y\overrightarrow {CD} $
Now, in $ \Delta CHB, $
$ \Rightarrow \overrightarrow {CH} + \overrightarrow {HB} = \overrightarrow {CB} $
Place values from the given data –
$ \Rightarrow yn( - 6i + 15j - 3k) + xm(2i - 6j + 2k) = - i - 2j $
Multiply the factors inside the bracket and simplify the above equations –
$ \Rightarrow ( - 6yni + 15ynj - 3ynk) + (2xmi - 6xmj + 2xmk) = - i - 2j $
Make pair of terms with respect to the “i”, “j” and “k” terms –
$ \Rightarrow \underline { - 6yni + 2xmi} + \underline {15ynj - 6xmj} \underline { - 3ynk + 2xmk} = - i - 2j $
Take common the respective terms –
$ \Rightarrow i( - 6ny + 2mx) + j(15yn - 6x) + k( - 3yn + 2xm) = - i - 2j $
Now, compare the respective i,j and k terms on both the sides of the equation –
$
\Rightarrow - 6ny + 2mx = - 1\,{\text{ }}....{\text{ (A)}} \\
\Rightarrow 15yn - 6mx = - 2{\text{ }}....{\text{ (B)}} \\
\Rightarrow ( - 3yn + 2xm) = 0{\text{ }}....{\text{ (C)}} \\
$
Simplify the equations to get the values of the terms “x” and “y”
Solve the equation (c)
$
\Rightarrow ( - 3yn + 2xm) = 0{\text{ }} \\
\Rightarrow 3yn = 2xm\;{\text{ }}....{\text{ (D)}} \\
$
Place the value of the equation (D) in the equation (A)
$ \Rightarrow - 4mx + 2mx = 1\,{\text{ }} $
Simplify the equation –
$
\Rightarrow 2mx = 1\,{\text{ }} \\
\Rightarrow {\text{x = }}\dfrac{1}{{2m}} \\
$
Similarly place the above value in the equation (A)
$ \Rightarrow - 6ny + 2mx = - 1 $
$ \Rightarrow - 6ny + 2m\left( {\dfrac{1}{{2m}}} \right) = - 1 $
Like terms from the multiplicative and the division part cancel each other.
$ \Rightarrow - 6ny + 1 = - 1 $
When the term is moved from one side to another, sign also changes from negative to positive and vice-versa.
$
\Rightarrow - 6ny = - 1 - 1 \\
\Rightarrow - 6ny = - 2 \\
$
Minus sign cancel each other from both the sides of the equation, and make the unknown “y” the subject.
$
\Rightarrow y = \dfrac{2}{{6n}} \\
\Rightarrow y = \dfrac{1}{{3n}} \\
$
Because, we assume $ 0 < x < 1 $ and $ 0 < y < 1 $
$ \Rightarrow 0 < \dfrac{1}{{2m}} < 1{\text{ and }}0 < \dfrac{1}{{3n}} < 1 $
Simplification implies –
$ \Rightarrow m > \dfrac{1}{2}{\text{ and n}} > \dfrac{1}{3}{\text{ }}....{\text{ (i)}} $
Now, the area of $ \left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| $ .... (i)
Now, $ \overrightarrow {HB} = x\overrightarrow {AB} $
$ \overrightarrow {HB} = xm(2i - 6j + 2k), $
Place the values $ \Rightarrow 2mx = 1\,{\text{ }} \Rightarrow {\text{mx = }}\dfrac{1}{2} $
$
\overrightarrow {HB} = \dfrac{1}{2}(2i - 6j + 2k) \\
\overrightarrow {HB} = (i - 3j + k){\text{ }}....{\text{ (ii)}} \\
$
Similarly, $ y\overrightarrow {CD} = yn( - 6i + 15j - 3k) $
Place the values - $ yn = \dfrac{1}{3} $
$
y\overrightarrow {CD} = \dfrac{1}{3}( - 6i + 15j - 3k) \\
y\overrightarrow {CD} = ( - 2i + 5j - k){\text{ }}....{\text{ (iii)}} \\
$
Find the cross-product by using equations (ii) and (iii)
$ \overrightarrow {HB} \times \overrightarrow {CH} = \left| {\begin{array}{*{20}{c}}
i&j&k \\
1&{ - 3}&1 \\
{ - 2}&5&{ - 1}
\end{array}} \right| $
Expand the determinant-
$ \overrightarrow {HB} \times \overrightarrow {CH} = i[( - 3)( - 1) - 5] - j[(1)( - 1) - ( - 2)(1) + k[(1)(5) - ( - 3)( - 2)] $
Simplify the above equation –
$
\overrightarrow {HB} \times \overrightarrow {CH} = i(3 - 5) - j( - 1 + 2) + k(5 - 6) \\
\overrightarrow {HB} \times \overrightarrow {CH} = - 2i - j - k \\
$
Find the magnitude –
$
\left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \left| { - 2i - j - k} \right| \\
\Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{( - 1)}^2}} \\
$
Square of negative terms gives the positive terms-
$ \Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {4 + 1 + 1} = \sqrt 6 $
Now, place the above value in the equation (i)
$
\left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| \\
\Rightarrow \left| {\Delta CHB} \right| = \dfrac{1}{2}(\sqrt 6 ) \\
$
Simplify the above equation –
$ \Rightarrow \left| {\Delta CHB} \right| = \dfrac{{\sqrt 6 }}{2} $
Hence, from the given multiple choices- all the given options are the correct answer.
So, the correct answer is “Option D”.
Note: Always remember the properties of the cross-product and expansion of the determinant and simplify taking care of the positive and the negative sign. Also, remember the square and square-roots and its simplification for the efficient and accurate solution.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
