
A, B, C and D are four points such that AB $ = m(2i - 6j + 2k), $ BC $ = i + 2j $ and
CD $ = n( - 6i + 15j - 3k) $ If AB and CD intersect at some point H, then
(This question has multiple correct options)
A. $ m \geqslant \dfrac{1}{2} $
B. $ n \geqslant \dfrac{1}{2} $
C.Area of $ \Delta BCH = \dfrac{1}{{2}}\sqrt 6 $
D.All of these
Answer
552.3k+ views
Hint: Here we will use the different concepts of the solutions of the equations, the cross-product of the vector equation and area of the triangle using the cross product of vectors. Substitute and simplify as per the required solution.
Complete step-by-step answer:
Given that lines AB and CD intersect at the point H and now connect the points C and B.
So, the triangle BCH is formed.
Also,
$ \overrightarrow {AB} = m(2i - 6j + 2k), $
$ \overrightarrow {BC} = i + 2j $ and
$ \overrightarrow {CD} = n( - 6i + 15j - 3k). $
From the above figure, we can say that $ \overrightarrow {HB} = x\overrightarrow {AB} $
Where, “x” lies between zero and one. Such that $ 0 < x < 1 $
Similarly, $ \overrightarrow {CH} = y\overrightarrow {CD} $
Now, in $ \Delta CHB, $
$ \Rightarrow \overrightarrow {CH} + \overrightarrow {HB} = \overrightarrow {CB} $
Place values from the given data –
$ \Rightarrow yn( - 6i + 15j - 3k) + xm(2i - 6j + 2k) = - i - 2j $
Multiply the factors inside the bracket and simplify the above equations –
$ \Rightarrow ( - 6yni + 15ynj - 3ynk) + (2xmi - 6xmj + 2xmk) = - i - 2j $
Make pair of terms with respect to the “i”, “j” and “k” terms –
$ \Rightarrow \underline { - 6yni + 2xmi} + \underline {15ynj - 6xmj} \underline { - 3ynk + 2xmk} = - i - 2j $
Take common the respective terms –
$ \Rightarrow i( - 6ny + 2mx) + j(15yn - 6x) + k( - 3yn + 2xm) = - i - 2j $
Now, compare the respective i,j and k terms on both the sides of the equation –
$
\Rightarrow - 6ny + 2mx = - 1\,{\text{ }}....{\text{ (A)}} \\
\Rightarrow 15yn - 6mx = - 2{\text{ }}....{\text{ (B)}} \\
\Rightarrow ( - 3yn + 2xm) = 0{\text{ }}....{\text{ (C)}} \\
$
Simplify the equations to get the values of the terms “x” and “y”
Solve the equation (c)
$
\Rightarrow ( - 3yn + 2xm) = 0{\text{ }} \\
\Rightarrow 3yn = 2xm\;{\text{ }}....{\text{ (D)}} \\
$
Place the value of the equation (D) in the equation (A)
$ \Rightarrow - 4mx + 2mx = 1\,{\text{ }} $
Simplify the equation –
$
\Rightarrow 2mx = 1\,{\text{ }} \\
\Rightarrow {\text{x = }}\dfrac{1}{{2m}} \\
$
Similarly place the above value in the equation (A)
$ \Rightarrow - 6ny + 2mx = - 1 $
$ \Rightarrow - 6ny + 2m\left( {\dfrac{1}{{2m}}} \right) = - 1 $
Like terms from the multiplicative and the division part cancel each other.
$ \Rightarrow - 6ny + 1 = - 1 $
When the term is moved from one side to another, sign also changes from negative to positive and vice-versa.
$
\Rightarrow - 6ny = - 1 - 1 \\
\Rightarrow - 6ny = - 2 \\
$
Minus sign cancel each other from both the sides of the equation, and make the unknown “y” the subject.
$
\Rightarrow y = \dfrac{2}{{6n}} \\
\Rightarrow y = \dfrac{1}{{3n}} \\
$
Because, we assume $ 0 < x < 1 $ and $ 0 < y < 1 $
$ \Rightarrow 0 < \dfrac{1}{{2m}} < 1{\text{ and }}0 < \dfrac{1}{{3n}} < 1 $
Simplification implies –
$ \Rightarrow m > \dfrac{1}{2}{\text{ and n}} > \dfrac{1}{3}{\text{ }}....{\text{ (i)}} $
Now, the area of $ \left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| $ .... (i)
Now, $ \overrightarrow {HB} = x\overrightarrow {AB} $
$ \overrightarrow {HB} = xm(2i - 6j + 2k), $
Place the values $ \Rightarrow 2mx = 1\,{\text{ }} \Rightarrow {\text{mx = }}\dfrac{1}{2} $
$
\overrightarrow {HB} = \dfrac{1}{2}(2i - 6j + 2k) \\
\overrightarrow {HB} = (i - 3j + k){\text{ }}....{\text{ (ii)}} \\
$
Similarly, $ y\overrightarrow {CD} = yn( - 6i + 15j - 3k) $
Place the values - $ yn = \dfrac{1}{3} $
$
y\overrightarrow {CD} = \dfrac{1}{3}( - 6i + 15j - 3k) \\
y\overrightarrow {CD} = ( - 2i + 5j - k){\text{ }}....{\text{ (iii)}} \\
$
Find the cross-product by using equations (ii) and (iii)
$ \overrightarrow {HB} \times \overrightarrow {CH} = \left| {\begin{array}{*{20}{c}}
i&j&k \\
1&{ - 3}&1 \\
{ - 2}&5&{ - 1}
\end{array}} \right| $
Expand the determinant-
$ \overrightarrow {HB} \times \overrightarrow {CH} = i[( - 3)( - 1) - 5] - j[(1)( - 1) - ( - 2)(1) + k[(1)(5) - ( - 3)( - 2)] $
Simplify the above equation –
$
\overrightarrow {HB} \times \overrightarrow {CH} = i(3 - 5) - j( - 1 + 2) + k(5 - 6) \\
\overrightarrow {HB} \times \overrightarrow {CH} = - 2i - j - k \\
$
Find the magnitude –
$
\left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \left| { - 2i - j - k} \right| \\
\Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{( - 1)}^2}} \\
$
Square of negative terms gives the positive terms-
$ \Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {4 + 1 + 1} = \sqrt 6 $
Now, place the above value in the equation (i)
$
\left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| \\
\Rightarrow \left| {\Delta CHB} \right| = \dfrac{1}{2}(\sqrt 6 ) \\
$
Simplify the above equation –
$ \Rightarrow \left| {\Delta CHB} \right| = \dfrac{{\sqrt 6 }}{2} $
Hence, from the given multiple choices- all the given options are the correct answer.
So, the correct answer is “Option D”.
Note: Always remember the properties of the cross-product and expansion of the determinant and simplify taking care of the positive and the negative sign. Also, remember the square and square-roots and its simplification for the efficient and accurate solution.
Complete step-by-step answer:
Given that lines AB and CD intersect at the point H and now connect the points C and B.
So, the triangle BCH is formed.
Also,
$ \overrightarrow {AB} = m(2i - 6j + 2k), $
$ \overrightarrow {BC} = i + 2j $ and
$ \overrightarrow {CD} = n( - 6i + 15j - 3k). $
From the above figure, we can say that $ \overrightarrow {HB} = x\overrightarrow {AB} $
Where, “x” lies between zero and one. Such that $ 0 < x < 1 $
Similarly, $ \overrightarrow {CH} = y\overrightarrow {CD} $
Now, in $ \Delta CHB, $
$ \Rightarrow \overrightarrow {CH} + \overrightarrow {HB} = \overrightarrow {CB} $
Place values from the given data –
$ \Rightarrow yn( - 6i + 15j - 3k) + xm(2i - 6j + 2k) = - i - 2j $
Multiply the factors inside the bracket and simplify the above equations –
$ \Rightarrow ( - 6yni + 15ynj - 3ynk) + (2xmi - 6xmj + 2xmk) = - i - 2j $
Make pair of terms with respect to the “i”, “j” and “k” terms –
$ \Rightarrow \underline { - 6yni + 2xmi} + \underline {15ynj - 6xmj} \underline { - 3ynk + 2xmk} = - i - 2j $
Take common the respective terms –
$ \Rightarrow i( - 6ny + 2mx) + j(15yn - 6x) + k( - 3yn + 2xm) = - i - 2j $
Now, compare the respective i,j and k terms on both the sides of the equation –
$
\Rightarrow - 6ny + 2mx = - 1\,{\text{ }}....{\text{ (A)}} \\
\Rightarrow 15yn - 6mx = - 2{\text{ }}....{\text{ (B)}} \\
\Rightarrow ( - 3yn + 2xm) = 0{\text{ }}....{\text{ (C)}} \\
$
Simplify the equations to get the values of the terms “x” and “y”
Solve the equation (c)
$
\Rightarrow ( - 3yn + 2xm) = 0{\text{ }} \\
\Rightarrow 3yn = 2xm\;{\text{ }}....{\text{ (D)}} \\
$
Place the value of the equation (D) in the equation (A)
$ \Rightarrow - 4mx + 2mx = 1\,{\text{ }} $
Simplify the equation –
$
\Rightarrow 2mx = 1\,{\text{ }} \\
\Rightarrow {\text{x = }}\dfrac{1}{{2m}} \\
$
Similarly place the above value in the equation (A)
$ \Rightarrow - 6ny + 2mx = - 1 $
$ \Rightarrow - 6ny + 2m\left( {\dfrac{1}{{2m}}} \right) = - 1 $
Like terms from the multiplicative and the division part cancel each other.
$ \Rightarrow - 6ny + 1 = - 1 $
When the term is moved from one side to another, sign also changes from negative to positive and vice-versa.
$
\Rightarrow - 6ny = - 1 - 1 \\
\Rightarrow - 6ny = - 2 \\
$
Minus sign cancel each other from both the sides of the equation, and make the unknown “y” the subject.
$
\Rightarrow y = \dfrac{2}{{6n}} \\
\Rightarrow y = \dfrac{1}{{3n}} \\
$
Because, we assume $ 0 < x < 1 $ and $ 0 < y < 1 $
$ \Rightarrow 0 < \dfrac{1}{{2m}} < 1{\text{ and }}0 < \dfrac{1}{{3n}} < 1 $
Simplification implies –
$ \Rightarrow m > \dfrac{1}{2}{\text{ and n}} > \dfrac{1}{3}{\text{ }}....{\text{ (i)}} $
Now, the area of $ \left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| $ .... (i)
Now, $ \overrightarrow {HB} = x\overrightarrow {AB} $
$ \overrightarrow {HB} = xm(2i - 6j + 2k), $
Place the values $ \Rightarrow 2mx = 1\,{\text{ }} \Rightarrow {\text{mx = }}\dfrac{1}{2} $
$
\overrightarrow {HB} = \dfrac{1}{2}(2i - 6j + 2k) \\
\overrightarrow {HB} = (i - 3j + k){\text{ }}....{\text{ (ii)}} \\
$
Similarly, $ y\overrightarrow {CD} = yn( - 6i + 15j - 3k) $
Place the values - $ yn = \dfrac{1}{3} $
$
y\overrightarrow {CD} = \dfrac{1}{3}( - 6i + 15j - 3k) \\
y\overrightarrow {CD} = ( - 2i + 5j - k){\text{ }}....{\text{ (iii)}} \\
$
Find the cross-product by using equations (ii) and (iii)
$ \overrightarrow {HB} \times \overrightarrow {CH} = \left| {\begin{array}{*{20}{c}}
i&j&k \\
1&{ - 3}&1 \\
{ - 2}&5&{ - 1}
\end{array}} \right| $
Expand the determinant-
$ \overrightarrow {HB} \times \overrightarrow {CH} = i[( - 3)( - 1) - 5] - j[(1)( - 1) - ( - 2)(1) + k[(1)(5) - ( - 3)( - 2)] $
Simplify the above equation –
$
\overrightarrow {HB} \times \overrightarrow {CH} = i(3 - 5) - j( - 1 + 2) + k(5 - 6) \\
\overrightarrow {HB} \times \overrightarrow {CH} = - 2i - j - k \\
$
Find the magnitude –
$
\left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \left| { - 2i - j - k} \right| \\
\Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{( - 1)}^2}} \\
$
Square of negative terms gives the positive terms-
$ \Rightarrow \left| {\overrightarrow {HB} \times \overrightarrow {CH} } \right| = \sqrt {4 + 1 + 1} = \sqrt 6 $
Now, place the above value in the equation (i)
$
\left| {\Delta CHB} \right| = \dfrac{1}{2}\left| {(\overrightarrow {HB} \times \overrightarrow {CH} )} \right| \\
\Rightarrow \left| {\Delta CHB} \right| = \dfrac{1}{2}(\sqrt 6 ) \\
$
Simplify the above equation –
$ \Rightarrow \left| {\Delta CHB} \right| = \dfrac{{\sqrt 6 }}{2} $
Hence, from the given multiple choices- all the given options are the correct answer.
So, the correct answer is “Option D”.
Note: Always remember the properties of the cross-product and expansion of the determinant and simplify taking care of the positive and the negative sign. Also, remember the square and square-roots and its simplification for the efficient and accurate solution.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

