Answer
Verified
492.9k+ views
Hint: In this question apply the concept of combination i.e. when one student sends a card to another student and that student sends a card to the previous one then the number of possible ways is 2, so use this concept to reach the solution of the question.
Let us consider there are no students in the class.
So, if every students sends a card to every other student i.e. A gives a card to B and B gives a card to A, so between two students there are two ways of distributing the cards, so, among n students according to combination property the number of possible ways is $2{}^n{C_2}$.
(Two multiplied by ${}^n{C_2}$ is because cards are exchanged amongst all students i.e. every student gives cards to every other student if not then two is not multiplied).
And it is given that there are 930 cards exchanged amongst the students of a class.
$ \Rightarrow 2{}^n{C_2} = 930$…………….. (1)
Now we all know that $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, so use this property in above equation we have,
${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}$
Now we all know that $n! = n\left( {n - 1} \right)\left( {n - 2} \right)!$, so use this property in above equation we have,
${}^n{C_2} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2 \times 1}}$
Therefore from equation (1) we have,
$ \Rightarrow 2\dfrac{{n\left( {n - 1} \right)}}{{2 \times 1}} = 930$
$
\Rightarrow {n^2} - n = 930 \\
\Rightarrow {n^2} - n - 930 = 0 \\
$
Now factorize this equation we have,
$
\Rightarrow {n^2} - 31n + 30n - 930 = 0 \\
\Rightarrow n\left( {n - 31} \right) + 30\left( {n - 31} \right) = 0 \\
\Rightarrow \left( {n + 30} \right)\left( {n - 31} \right) = 0 \\
\Rightarrow \left( {n + 30} \right) = 0,{\text{ }}\left( {n - 31} \right) = 0 \\
\Rightarrow n = - 30,{\text{ 31}} \\
$
But n should not be negative.
So the number of students in the class is 31.
So, this is the required answer.
Note: In such types of questions the key concept we have to remember is that when the cards is exchanged among n students then number of possible ways is $2{}^n{C_2}$, then apply the property of combination and construct the equation as above and simplify, we will get the required number of students in the class.
Let us consider there are no students in the class.
So, if every students sends a card to every other student i.e. A gives a card to B and B gives a card to A, so between two students there are two ways of distributing the cards, so, among n students according to combination property the number of possible ways is $2{}^n{C_2}$.
(Two multiplied by ${}^n{C_2}$ is because cards are exchanged amongst all students i.e. every student gives cards to every other student if not then two is not multiplied).
And it is given that there are 930 cards exchanged amongst the students of a class.
$ \Rightarrow 2{}^n{C_2} = 930$…………….. (1)
Now we all know that $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, so use this property in above equation we have,
${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}$
Now we all know that $n! = n\left( {n - 1} \right)\left( {n - 2} \right)!$, so use this property in above equation we have,
${}^n{C_2} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2 \times 1}}$
Therefore from equation (1) we have,
$ \Rightarrow 2\dfrac{{n\left( {n - 1} \right)}}{{2 \times 1}} = 930$
$
\Rightarrow {n^2} - n = 930 \\
\Rightarrow {n^2} - n - 930 = 0 \\
$
Now factorize this equation we have,
$
\Rightarrow {n^2} - 31n + 30n - 930 = 0 \\
\Rightarrow n\left( {n - 31} \right) + 30\left( {n - 31} \right) = 0 \\
\Rightarrow \left( {n + 30} \right)\left( {n - 31} \right) = 0 \\
\Rightarrow \left( {n + 30} \right) = 0,{\text{ }}\left( {n - 31} \right) = 0 \\
\Rightarrow n = - 30,{\text{ 31}} \\
$
But n should not be negative.
So the number of students in the class is 31.
So, this is the required answer.
Note: In such types of questions the key concept we have to remember is that when the cards is exchanged among n students then number of possible ways is $2{}^n{C_2}$, then apply the property of combination and construct the equation as above and simplify, we will get the required number of students in the class.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE