Answer
Verified
390.3k+ views
Hint: To find the required probability, we need to find the total number of outcomes and favorable number of outcomes first. Then, we will use the formula of probability that is $\text{Probability}=\dfrac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$ and substitute the obtained value of favorable number of outcomes and total number of outcomes. After simplifying it, we will get the probability that the sum of the numbers on the ball is $8$ when two balls are picked.
Complete step-by-step solution:
Since, the order is not important for selection of balls. So we will use the formula of combination to get the total number of outcomes as:
$\Rightarrow {}^{n}{{C}_{r}}=\dfrac{n!}{r!\centerdot \left( n-r \right)!}$
Where, $n$ is the total number of objects and $r$ is the number of objects chosen.
Now, we will substitute $6$ for $n$ and $2$ for $r$in the above formula.
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6!}{2!\centerdot \left( 6-2 \right)!}$
Solve the terms within the bracket.
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6!}{2!\centerdot \left( 4 \right)!}$
We can write $15!$ as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6\centerdot 5\centerdot 4!}{2!\centerdot \left( 4 \right)!}$
Here, we will cancel out the equal like terms and will expand the factorial terms as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6\centerdot 5}{1\centerdot 2}$
Now, we will complete the multiplication in numerator and denominator as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{30}{2}$
After simplifying the above step, we will have:
$\Rightarrow {}^{6}{{C}_{2}}=15$
Since, there are only two combinations that sum is $8$(2,6),(3,5). So, the number of favorable outcomes is $2$.
Now, we will use the formula of probability to get the required probability as:
$\text{Probability}=\dfrac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$
Here, we will substitute the respective values as:
\[\text{Probability}=\dfrac{\text{2}}{\text{15}}\]
Hence, \[\dfrac{\text{2}}{\text{15}}\] is the required probability that the sum of the numbers on the balls is$8$.
Note: Here a term is given as picking up the balls that means we have to select the balls and we use the combination for selection of objects. Combination is the possible number of outcomes of selecting objects where order doesn’t matter. The formula used for calculation of number of combination is:
$\Rightarrow {}^{n}{{C}_{r}}=\dfrac{n!}{r!\centerdot \left( n-r \right)!}$
Where, $n\ge r$ and $n$ is the total number of objects and $r$ is the number of objects chosen.
Complete step-by-step solution:
Since, the order is not important for selection of balls. So we will use the formula of combination to get the total number of outcomes as:
$\Rightarrow {}^{n}{{C}_{r}}=\dfrac{n!}{r!\centerdot \left( n-r \right)!}$
Where, $n$ is the total number of objects and $r$ is the number of objects chosen.
Now, we will substitute $6$ for $n$ and $2$ for $r$in the above formula.
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6!}{2!\centerdot \left( 6-2 \right)!}$
Solve the terms within the bracket.
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6!}{2!\centerdot \left( 4 \right)!}$
We can write $15!$ as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6\centerdot 5\centerdot 4!}{2!\centerdot \left( 4 \right)!}$
Here, we will cancel out the equal like terms and will expand the factorial terms as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6\centerdot 5}{1\centerdot 2}$
Now, we will complete the multiplication in numerator and denominator as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{30}{2}$
After simplifying the above step, we will have:
$\Rightarrow {}^{6}{{C}_{2}}=15$
Since, there are only two combinations that sum is $8$(2,6),(3,5). So, the number of favorable outcomes is $2$.
Now, we will use the formula of probability to get the required probability as:
$\text{Probability}=\dfrac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$
Here, we will substitute the respective values as:
\[\text{Probability}=\dfrac{\text{2}}{\text{15}}\]
Hence, \[\dfrac{\text{2}}{\text{15}}\] is the required probability that the sum of the numbers on the balls is$8$.
Note: Here a term is given as picking up the balls that means we have to select the balls and we use the combination for selection of objects. Combination is the possible number of outcomes of selecting objects where order doesn’t matter. The formula used for calculation of number of combination is:
$\Rightarrow {}^{n}{{C}_{r}}=\dfrac{n!}{r!\centerdot \left( n-r \right)!}$
Where, $n\ge r$ and $n$ is the total number of objects and $r$ is the number of objects chosen.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE