
6 balls are marked with numbers $1$ to $6$. If two balls are picked out of these $6$ balls, what is the probability that the sum of the numbers on the balls is $8$?
A. 1/15
B. 2/15
C. 1/5
D. 4/15
E. 1/3
Answer
518.1k+ views
Hint: To find the required probability, we need to find the total number of outcomes and favorable number of outcomes first. Then, we will use the formula of probability that is $\text{Probability}=\dfrac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$ and substitute the obtained value of favorable number of outcomes and total number of outcomes. After simplifying it, we will get the probability that the sum of the numbers on the ball is $8$ when two balls are picked.
Complete step-by-step solution:
Since, the order is not important for selection of balls. So we will use the formula of combination to get the total number of outcomes as:
$\Rightarrow {}^{n}{{C}_{r}}=\dfrac{n!}{r!\centerdot \left( n-r \right)!}$
Where, $n$ is the total number of objects and $r$ is the number of objects chosen.
Now, we will substitute $6$ for $n$ and $2$ for $r$in the above formula.
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6!}{2!\centerdot \left( 6-2 \right)!}$
Solve the terms within the bracket.
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6!}{2!\centerdot \left( 4 \right)!}$
We can write $15!$ as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6\centerdot 5\centerdot 4!}{2!\centerdot \left( 4 \right)!}$
Here, we will cancel out the equal like terms and will expand the factorial terms as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6\centerdot 5}{1\centerdot 2}$
Now, we will complete the multiplication in numerator and denominator as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{30}{2}$
After simplifying the above step, we will have:
$\Rightarrow {}^{6}{{C}_{2}}=15$
Since, there are only two combinations that sum is $8$(2,6),(3,5). So, the number of favorable outcomes is $2$.
Now, we will use the formula of probability to get the required probability as:
$\text{Probability}=\dfrac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$
Here, we will substitute the respective values as:
\[\text{Probability}=\dfrac{\text{2}}{\text{15}}\]
Hence, \[\dfrac{\text{2}}{\text{15}}\] is the required probability that the sum of the numbers on the balls is$8$.
Note: Here a term is given as picking up the balls that means we have to select the balls and we use the combination for selection of objects. Combination is the possible number of outcomes of selecting objects where order doesn’t matter. The formula used for calculation of number of combination is:
$\Rightarrow {}^{n}{{C}_{r}}=\dfrac{n!}{r!\centerdot \left( n-r \right)!}$
Where, $n\ge r$ and $n$ is the total number of objects and $r$ is the number of objects chosen.
Complete step-by-step solution:
Since, the order is not important for selection of balls. So we will use the formula of combination to get the total number of outcomes as:
$\Rightarrow {}^{n}{{C}_{r}}=\dfrac{n!}{r!\centerdot \left( n-r \right)!}$
Where, $n$ is the total number of objects and $r$ is the number of objects chosen.
Now, we will substitute $6$ for $n$ and $2$ for $r$in the above formula.
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6!}{2!\centerdot \left( 6-2 \right)!}$
Solve the terms within the bracket.
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6!}{2!\centerdot \left( 4 \right)!}$
We can write $15!$ as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6\centerdot 5\centerdot 4!}{2!\centerdot \left( 4 \right)!}$
Here, we will cancel out the equal like terms and will expand the factorial terms as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{6\centerdot 5}{1\centerdot 2}$
Now, we will complete the multiplication in numerator and denominator as:
$\Rightarrow {}^{6}{{C}_{2}}=\dfrac{30}{2}$
After simplifying the above step, we will have:
$\Rightarrow {}^{6}{{C}_{2}}=15$
Since, there are only two combinations that sum is $8$(2,6),(3,5). So, the number of favorable outcomes is $2$.
Now, we will use the formula of probability to get the required probability as:
$\text{Probability}=\dfrac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$
Here, we will substitute the respective values as:
\[\text{Probability}=\dfrac{\text{2}}{\text{15}}\]
Hence, \[\dfrac{\text{2}}{\text{15}}\] is the required probability that the sum of the numbers on the balls is$8$.
Note: Here a term is given as picking up the balls that means we have to select the balls and we use the combination for selection of objects. Combination is the possible number of outcomes of selecting objects where order doesn’t matter. The formula used for calculation of number of combination is:
$\Rightarrow {}^{n}{{C}_{r}}=\dfrac{n!}{r!\centerdot \left( n-r \right)!}$
Where, $n\ge r$ and $n$ is the total number of objects and $r$ is the number of objects chosen.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

