Answer
Verified
367.2k+ views
Hint: To find \[ABCD\], we will check all the possibilities one by one . As we know, any number \[abcd\] can be written as \[1000a + 100b + 10c + d\]. Using this we will first write \[ABCD\] as \[1000A + 100B + 10C + D\] and \[DCBA\] as \[1000D + 100C + 10B + A\]. Then using the facts, we will eliminate the inappropriate possibilities to find \[ABCD\].
Complete step by step answer:
As we know that any number \[ABCD\] can be written as
\[ \Rightarrow ABCD = 1000A + 100B + 10C + D - - - (1)\]
In a similar way, any number \[DCBA\] can be written as
\[ \Rightarrow DCBA = 1000D + 100C + 10B + A - - - (2)\]
It is given in the question that \[4 \times \left( {ABCD} \right) = DCBA\].
Here, we can see that \[DCBA\] is a four-digit number, so \[ABCD\] must be less than \[2500\] because any number greater than \[2500\] on multiplication with \[4\] will give a five digit number which is not required.
So, \[A\] will be either \[1\] or \[2\]. But as we know a multiple of \[4\] will always be an even number. Therefore, from \[DCBA\] we can say \[A\] is \[2\].
As we get \[A = 2\], and also \[DCBA\] is a four-digit number. So, four times \[2\] will give \[D = 8\].
Now, using \[4 \times \left( {ABCD} \right) = DCBA\], \[\left( 1 \right)\] and \[\left( 2 \right)\], we can write
\[ \Rightarrow 4 \times \left( {1000A + 100B + 10C + D} \right) = 1000D + 100C + 10B + A\]
Putting values of \[A = 2\] and \[D = 8\], we get
\[ \Rightarrow 4 \times \left( {1000 \times 2 + 100B + 10C + 8} \right) = 1000 \times 8 + 100C + 10B + 2\]
On simplification we get
\[ \Rightarrow 8000 + 400B + 40C + 32 = 8000 + 100C + 10B + 2\]
On further simplification we get
\[ \Rightarrow 390B - 60C + 30 = 0\]
Dividing both the sides by \[30\], we get
\[ \Rightarrow 13B - 2C + 1 = 0\]
On rewriting we get,
\[ \Rightarrow 2C = 13B + 1 - - - (3)\]
The only possible value of \[B\] and \[C\] which satisfies equation \[(3)\] is \[B = 1\] and \[C = 7\].
So, we get \[A = 2\], \[B = 1\], \[C = 7\] and \[D = 8\].
Therefore, \[ABCD\] is \[2178\].
Note:
Here, we can check that the answer obtained is correct or not by multiplying \[ABCD\] i.e., \[2178\] with \[4\], on multiplying we get \[8712\] i.e., \[DCBA\]. Therefore, it satisfies the condition given in the question i.e., \[4 \times \left( {ABCD} \right) = DCBA\]. Therefore, the obtained value of \[ABCD\] is correct.
Complete step by step answer:
As we know that any number \[ABCD\] can be written as
\[ \Rightarrow ABCD = 1000A + 100B + 10C + D - - - (1)\]
In a similar way, any number \[DCBA\] can be written as
\[ \Rightarrow DCBA = 1000D + 100C + 10B + A - - - (2)\]
It is given in the question that \[4 \times \left( {ABCD} \right) = DCBA\].
Here, we can see that \[DCBA\] is a four-digit number, so \[ABCD\] must be less than \[2500\] because any number greater than \[2500\] on multiplication with \[4\] will give a five digit number which is not required.
So, \[A\] will be either \[1\] or \[2\]. But as we know a multiple of \[4\] will always be an even number. Therefore, from \[DCBA\] we can say \[A\] is \[2\].
As we get \[A = 2\], and also \[DCBA\] is a four-digit number. So, four times \[2\] will give \[D = 8\].
Now, using \[4 \times \left( {ABCD} \right) = DCBA\], \[\left( 1 \right)\] and \[\left( 2 \right)\], we can write
\[ \Rightarrow 4 \times \left( {1000A + 100B + 10C + D} \right) = 1000D + 100C + 10B + A\]
Putting values of \[A = 2\] and \[D = 8\], we get
\[ \Rightarrow 4 \times \left( {1000 \times 2 + 100B + 10C + 8} \right) = 1000 \times 8 + 100C + 10B + 2\]
On simplification we get
\[ \Rightarrow 8000 + 400B + 40C + 32 = 8000 + 100C + 10B + 2\]
On further simplification we get
\[ \Rightarrow 390B - 60C + 30 = 0\]
Dividing both the sides by \[30\], we get
\[ \Rightarrow 13B - 2C + 1 = 0\]
On rewriting we get,
\[ \Rightarrow 2C = 13B + 1 - - - (3)\]
The only possible value of \[B\] and \[C\] which satisfies equation \[(3)\] is \[B = 1\] and \[C = 7\].
So, we get \[A = 2\], \[B = 1\], \[C = 7\] and \[D = 8\].
Therefore, \[ABCD\] is \[2178\].
Note:
Here, we can check that the answer obtained is correct or not by multiplying \[ABCD\] i.e., \[2178\] with \[4\], on multiplying we get \[8712\] i.e., \[DCBA\]. Therefore, it satisfies the condition given in the question i.e., \[4 \times \left( {ABCD} \right) = DCBA\]. Therefore, the obtained value of \[ABCD\] is correct.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it