Answer

Verified

345.9k+ views

**Hint:**First we have to define what the terms we need to solve the problem are.

Since we need to find the framing of the word RUCHIKA into the four-letter words may or may not be meaningful but with or without repetition of the same letters.

Like repetition not allowed means once the letter U in the word RUCHIKA is arrived then we cannot use it again to frame another set of words.

**Complete step-by-step solution:**

Since there are total seven letters in the words RUCHIKA, so $7$ is the total value and we need only four letters words that means $4$ is the restriction and thus ${}^7{c_4}$ is the combination that number of ways to put the set of seven letter into the four letters words.

$a)$Repetition of letters is not allowed.

Since the repetition of the letter is not allowed so once a letter arrived in a word will need to be eliminated for the other words and thus, we already know the combination is ${}^7{c_4}$ is the overall combination and four letters can be arrived at word one thus we have four ways;

And similarly for the word two we have (three letter as without repetition)

For the word three we have two letters and finally for the last word we have only one letter left

Thus, we get the required solutions as ${}^7{c_4} \times 4 \times 3 \times 2 \times 1$(applying the multiplication formula)

Thus, we get ${}^7{c_4} \times 4 \times 3 \times 2 \times 1 = 840$ is the repetition not allowed letters

$b)$ Repetition of letters is allowed.

If the reputation of the letters is allowed then it will be very simple; for the first word we have seven letters thus $7$ ways, and for the second word we also have the same $7$ letters as repetition is now allowed as similarly for the third and final words, we have the $7$ letters then of the combination

Thus, we get $7 \times 7 \times 7 \times 7$(repetition is allowed)

**Therefore, we get $7 \times 7 \times 7 \times 7 = 2401$ of repetition of the letters for the four words.**

**Note:**Combination is the number of ways to arrange or count the given problem and ${}^n{c_r} = \dfrac{{n!}}{{r!(n - r)!}}$

n is the total amount and r is the object that needs to arrange into the different sets. And repetition means that the same letter can be able to come again and again in all the sets.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE