Question

# In Bohr’s hydrogen atom, the electronic transition emitting light of longest wavelength is:

- n =4 to n =3
- n =2 to n =3
- n =3 to n =2
- n =2 to n =1

## The correct answer is: n =4 to n =3

### Related Questions to study

### P_{1},P_{2},P_{3}, be the product of perpendiculars from (0,0) to respectively then:

P1 = 1;

P2 = ;

P3 = ;

>>> Therefore, we can say that P1>P2>P3.

### P_{1},P_{2},P_{3}, be the product of perpendiculars from (0,0) to respectively then:

P1 = 1;

P2 = ;

P3 = ;

>>> Therefore, we can say that P1>P2>P3.

### If θ is angle between pair of lines , then

>>> = 2.

>>> tan =

>>> = 10.

### If θ is angle between pair of lines , then

>>> = 2.

>>> tan =

>>> = 10.

### If the pair of lines intersect on the x-axis, then 2fgh=

### If the pair of lines intersect on the x-axis, then 2fgh=

### If the pair of lines intersect on the x-axis, then ac=

### If the pair of lines intersect on the x-axis, then ac=

### If the equation represents a pair of perpendicular lines then its point of intersection is

### If the equation represents a pair of perpendicular lines then its point of intersection is

### If the lines and are concurrent then λ

>>> The value of is 2.

### If the lines and are concurrent then λ

>>> The value of is 2.

### The equation of the line concurrent with the pair of lines is

Hence, x=y is the the line that is concurrent with the pair of straight lines.

### The equation of the line concurrent with the pair of lines is

Hence, x=y is the the line that is concurrent with the pair of straight lines.

### If the equation represents a pair of straight lines then their point of intersection is

>>>The point of intersection of the pair of straight lines x^{2} – 5xy + 6y^{2} + x – 3y = 0 is (-3, -1)

### If the equation represents a pair of straight lines then their point of intersection is

>>>The point of intersection of the pair of straight lines x^{2} – 5xy + 6y^{2} + x – 3y = 0 is (-3, -1)