
Write the value of x if \[\left|\begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\] =\[\left|\begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\] .
Answer
576.9k+ views
Hint: By using the concept, we can say that the determinant of a matrix \[\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\] is equal to \[ad-bc\]. From this question, it is clear that \[\left|\begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]=\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align}\right|\]. Let us assume this as equation (1). By using this concept, we should find the value of \[\left|\begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]. Let us assume this as equation (2). Again, by using this concept, we should find the value of \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align}\right|\]. Let us assume this as equation (3). Now we should substitute equation (2) and equation (3) in equation (1). In this way, we can find the value of x.
Complete step by step answer:
We know that the determinant of a matrix \[\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\] is equal to \[ad-bc\].
From the question, we should solve the equation \[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]= \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].
Let us consider
\[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]=\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].......(1)
Now let us find the value of \[\left|\begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]
\[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]= $( 2x)( x)-( 5)( 8 )$
$ \Rightarrow \left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right| = 2{{x}^{2}}-40......(2) $
Now let find the value of \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].
$
\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|$= $( 6)( 3)-( -2 )( 7) $
$ \Rightarrow $ \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\] = 18- (-14 )
$ \Rightarrow $\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\] = 18+14
$ \therefore $\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\] = 32.....(3)
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\begin{align}
& \Rightarrow 2{{x}^{2}}-40=32 \\
& \Rightarrow 2{{x}^{2}}=32+40 \\
& \Rightarrow 2{{x}^{2}}=72 \\
& \Rightarrow {{x}^{2}}=\dfrac{72}{2} \\
& \Rightarrow {{x}^{2}}=36 \\
& \Rightarrow x=\pm 6.....(4) \\
\end{align}\]
From equation (4), the values of x are equal to 6 and -6.
Note:
Some students have a misconception that the determinant of a matrix \[\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\] is equal to \[ad+bc\]. If this misconception is followed, then
From the question, we should solve the equation \[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]=\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].
Let us consider
\[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]=\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|.......(1)\]
Now let us find the value of \[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\].
$
\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right| = ( 2x) ( x )+ ( 5)( 8) $
$\Rightarrow \left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|=2{{x}^{2}}+40......(2) $
Now let find the value of \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].
$
\Rightarrow \left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|=( 6 )( 3 )+( -2 )( 7 ) $
$ \Rightarrow \left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|=18+( -14 ) $
$ \Rightarrow \left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|=18-14 $
$ \Rightarrow \left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|=4.....(3)
$
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\begin{align}
& \Rightarrow 2{{x}^{2}}+40=4 \\
& \Rightarrow 2{{x}^{2}}=4-40 \\
& \Rightarrow 2{{x}^{2}}=-36 \\
& \Rightarrow {{x}^{2}}=\dfrac{-36}{2} \\
& \Rightarrow {{x}^{2}}=-18 \\
& \Rightarrow x=\sqrt{-18}.....(4) \\
\end{align}\]
From equation (4), it is clear that we cannot have the real value of x. But we know that the value of x are equal to -6 and 6.
a & b \\
c & d \\
\end{matrix} \right|\] is equal to \[ad-bc\]. From this question, it is clear that \[\left|\begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]=\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align}\right|\]. Let us assume this as equation (1). By using this concept, we should find the value of \[\left|\begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]. Let us assume this as equation (2). Again, by using this concept, we should find the value of \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align}\right|\]. Let us assume this as equation (3). Now we should substitute equation (2) and equation (3) in equation (1). In this way, we can find the value of x.
Complete step by step answer:
We know that the determinant of a matrix \[\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\] is equal to \[ad-bc\].
From the question, we should solve the equation \[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]= \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].
Let us consider
\[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]=\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].......(1)
Now let us find the value of \[\left|\begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]
\[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]= $( 2x)( x)-( 5)( 8 )$
$ \Rightarrow \left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right| = 2{{x}^{2}}-40......(2) $
Now let find the value of \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].
$
\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|$= $( 6)( 3)-( -2 )( 7) $
$ \Rightarrow $ \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\] = 18- (-14 )
$ \Rightarrow $\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\] = 18+14
$ \therefore $\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\] = 32.....(3)
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\begin{align}
& \Rightarrow 2{{x}^{2}}-40=32 \\
& \Rightarrow 2{{x}^{2}}=32+40 \\
& \Rightarrow 2{{x}^{2}}=72 \\
& \Rightarrow {{x}^{2}}=\dfrac{72}{2} \\
& \Rightarrow {{x}^{2}}=36 \\
& \Rightarrow x=\pm 6.....(4) \\
\end{align}\]
From equation (4), the values of x are equal to 6 and -6.
Note:
Some students have a misconception that the determinant of a matrix \[\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\] is equal to \[ad+bc\]. If this misconception is followed, then
From the question, we should solve the equation \[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]=\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].
Let us consider
\[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\]=\[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|.......(1)\]
Now let us find the value of \[\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|\].
$
\left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right| = ( 2x) ( x )+ ( 5)( 8) $
$\Rightarrow \left| \begin{align}
& 2x\text{ 5} \\
& \text{8 x} \\
\end{align} \right|=2{{x}^{2}}+40......(2) $
Now let find the value of \[\left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|\].
$
\Rightarrow \left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|=( 6 )( 3 )+( -2 )( 7 ) $
$ \Rightarrow \left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|=18+( -14 ) $
$ \Rightarrow \left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|=18-14 $
$ \Rightarrow \left| \begin{align}
& \text{6 -2} \\
& \text{7 3} \\
\end{align} \right|=4.....(3)
$
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\begin{align}
& \Rightarrow 2{{x}^{2}}+40=4 \\
& \Rightarrow 2{{x}^{2}}=4-40 \\
& \Rightarrow 2{{x}^{2}}=-36 \\
& \Rightarrow {{x}^{2}}=\dfrac{-36}{2} \\
& \Rightarrow {{x}^{2}}=-18 \\
& \Rightarrow x=\sqrt{-18}.....(4) \\
\end{align}\]
From equation (4), it is clear that we cannot have the real value of x. But we know that the value of x are equal to -6 and 6.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

