
Write the value of ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)$.
Answer
590.7k+ views
Hint:We will apply the basic identity which is used in inverse trigonometric functions. This formula is given by ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. Because of this we will find the value of ${{\cos }^{-1}}\left( -\dfrac{1}{3} \right)$ in the expression ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)$.
Complete step-by-step answer:
We will consider the expression ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)...(i)$.
Now, to solve this expression we need to use the basic identity of inverse trigonometric functions. This is given by ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. This can also be written as ${{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x$ by placing the inverse sign term to the right side of the equation. In this formula we will substitute the value of x as $-\dfrac{1}{3}$. Therefore, we have ${{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( -\dfrac{1}{3} \right)$.
Now, we will substitute the value of ${{\cos }^{-1}}\left( -\dfrac{1}{3} \right)$ in the expression (i). Thus, our expression is converted into a new expression which is given by ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\left( \dfrac{\pi }{2}-{{\sin }^{-1}}\left( -\dfrac{1}{3} \right) \right)$.
After multiplying the minus sign in the equation we will get ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right)$.
At this step we will use the formula which is given by $\sin \left( -x \right)=-\sin \left( x \right)$ where x can be any integer.
Therefore, now we after substituting x as $-\dfrac{1}{3}$ again we will have $\sin \left( -\dfrac{1}{3} \right)=-\sin \left( \dfrac{1}{3} \right)$.
Now, we will substitute the value $\sin \left( -\dfrac{1}{3} \right)=-\sin \left( \dfrac{1}{3} \right)$ in ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right)$. Therefore, we get
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+\left( -{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \\
\end{align}$
Now we will cancel both inverse sine terms which are in the right side of the equation with negative and positive sign. This results into
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=-\dfrac{\pi }{2} \\
\end{align}$
Thus, the required value of the expression ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=-\dfrac{\pi }{2}$.
Note: We should always keep this in mind that whenever we take any term to the either side of the equation we have to take care that it should always be converted into its opposite sign. For example in this question we have taken the inverse sine term to the right side of the expression and we have changed the positive sign to the negative sign and then pursued it with the formula.
Complete step-by-step answer:
We will consider the expression ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)...(i)$.
Now, to solve this expression we need to use the basic identity of inverse trigonometric functions. This is given by ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. This can also be written as ${{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x$ by placing the inverse sign term to the right side of the equation. In this formula we will substitute the value of x as $-\dfrac{1}{3}$. Therefore, we have ${{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( -\dfrac{1}{3} \right)$.
Now, we will substitute the value of ${{\cos }^{-1}}\left( -\dfrac{1}{3} \right)$ in the expression (i). Thus, our expression is converted into a new expression which is given by ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\left( \dfrac{\pi }{2}-{{\sin }^{-1}}\left( -\dfrac{1}{3} \right) \right)$.
After multiplying the minus sign in the equation we will get ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right)$.
At this step we will use the formula which is given by $\sin \left( -x \right)=-\sin \left( x \right)$ where x can be any integer.
Therefore, now we after substituting x as $-\dfrac{1}{3}$ again we will have $\sin \left( -\dfrac{1}{3} \right)=-\sin \left( \dfrac{1}{3} \right)$.
Now, we will substitute the value $\sin \left( -\dfrac{1}{3} \right)=-\sin \left( \dfrac{1}{3} \right)$ in ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right)$. Therefore, we get
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+{{\sin }^{-1}}\left( -\dfrac{1}{3} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}+\left( -{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \\
\end{align}$
Now we will cancel both inverse sine terms which are in the right side of the equation with negative and positive sign. This results into
$\begin{align}
& {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)={{\sin }^{-1}}\left( \dfrac{1}{3} \right)-\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{3} \right) \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=-\dfrac{\pi }{2} \\
\end{align}$
Thus, the required value of the expression ${{\sin }^{-1}}\left( \dfrac{1}{3} \right)-{{\cos }^{-1}}\left( -\dfrac{1}{3} \right)=-\dfrac{\pi }{2}$.
Note: We should always keep this in mind that whenever we take any term to the either side of the equation we have to take care that it should always be converted into its opposite sign. For example in this question we have taken the inverse sine term to the right side of the expression and we have changed the positive sign to the negative sign and then pursued it with the formula.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

