
Write the value $\left| \begin{matrix}
x+y & y+z & z+x \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|$
Answer
513k+ views
Hint: Now we know using elementary row and column transformation does not change the value of determinant. Hence we can use row transformations to simplify this determinant. Now first we will ${{R}_{1}}={{R}_{1}}+{{R}_{3}}$ . This will give us a determinant in which the 1st row has the same elements. Hence we will take x + y + z common from the determinant. Now we will again use Row transformation ${{R}_{1}}\to {{R}_{1}}+\dfrac{1}{3}{{R}_{3}}$ and then solve the determinant.
Complete step-by-step answer:
Now consider the determinant $\left| \begin{matrix}
x+y & y+z & z+x \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|$
Now we can use elementary row transformation to solve this determinant.
Row transformation can be adding one row to a row or adding multiple of a row to any row.
Here we will add row 2 to row 1.
Now here row transformation does not change the value of determinant.
Hence we can use them easily to simplify the determinant
Hence using ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}$ . We get the determinant as
$\left| \begin{matrix}
x+y+z & y+z+x & z+x+y \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|$
Now rearranging the terms in row 1 we get.
$\left| \begin{matrix}
x+y+z & x+y+z & x+y+z \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|$
Now we can see that all the terms in row 1 are equal. Now we can take this common and hence take it out of determinant.
\[\left( x+y+z \right)\left| \begin{matrix}
1 & 1 & 1 \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|\]
Now again using the transformation ${{R}_{1}}\to {{R}_{1}}+\dfrac{1}{3}{{R}_{3}}$ . we get the determinant as
\[\left( x+y+z \right)\left| \begin{matrix}
0 & 0 & 0 \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|\]
Now let us open the determinant, Hence we get
(x + y + z) [0(-3x – (- 3y)) – 0(- 3z - (-3y)) + 0(-3z – (-3y))].
= (x + y + z)[0 – 0 + 0]
=(x + y + z)[0]
=0
Hence we get the value of the determinant is 0.
Note: We have a property of determinant which says if any two rows or columns are the same then the value of the determinant is equal to 0. Hence if we apply row transformation \[{{R}_{1}}\to {{R}_{1}}-4{{R}_{1}}\] to the determinant \[\left| \begin{matrix}
1 & 1 & 1 \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|\] we will get \[\left| \begin{matrix}
-3 & -3 & -3 \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|\] and hence the value of determinant is 0.
Complete step-by-step answer:
Now consider the determinant $\left| \begin{matrix}
x+y & y+z & z+x \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|$
Now we can use elementary row transformation to solve this determinant.
Row transformation can be adding one row to a row or adding multiple of a row to any row.
Here we will add row 2 to row 1.
Now here row transformation does not change the value of determinant.
Hence we can use them easily to simplify the determinant
Hence using ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}$ . We get the determinant as
$\left| \begin{matrix}
x+y+z & y+z+x & z+x+y \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|$
Now rearranging the terms in row 1 we get.
$\left| \begin{matrix}
x+y+z & x+y+z & x+y+z \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|$
Now we can see that all the terms in row 1 are equal. Now we can take this common and hence take it out of determinant.
\[\left( x+y+z \right)\left| \begin{matrix}
1 & 1 & 1 \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|\]
Now again using the transformation ${{R}_{1}}\to {{R}_{1}}+\dfrac{1}{3}{{R}_{3}}$ . we get the determinant as
\[\left( x+y+z \right)\left| \begin{matrix}
0 & 0 & 0 \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|\]
Now let us open the determinant, Hence we get
(x + y + z) [0(-3x – (- 3y)) – 0(- 3z - (-3y)) + 0(-3z – (-3y))].
= (x + y + z)[0 – 0 + 0]
=(x + y + z)[0]
=0
Hence we get the value of the determinant is 0.
Note: We have a property of determinant which says if any two rows or columns are the same then the value of the determinant is equal to 0. Hence if we apply row transformation \[{{R}_{1}}\to {{R}_{1}}-4{{R}_{1}}\] to the determinant \[\left| \begin{matrix}
1 & 1 & 1 \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|\] we will get \[\left| \begin{matrix}
-3 & -3 & -3 \\
z & x & y \\
-3 & -3 & -3 \\
\end{matrix} \right|\] and hence the value of determinant is 0.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
