
How do you write the taylor series for the function $f\left( x \right)=\sqrt{x}$ at $a=16$?
Answer
564.3k+ views
Hint: We start solving the problem by recalling the fact that the taylor series of the function $f\left( x \right)$ at $x=a$ is defined as $f\left( x \right)=f\left( a \right)+{{f}^{'}}\left( a \right)\times \dfrac{\left( x-a \right)}{1!}+{{f}^{''}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{2}}}{2!}+.......{{f}^{n}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{n}}}{n!}+.....$. We then use this result for the given function at $a=16$. We then find the general form of all the derivatives of the function $f\left( x \right)$ and substitute in the formula. We then make the necessary calculations to get the required answer.
Complete step-by-step solution:
According to the problem, we are asked to find the taylor series for the function $f\left( x \right)=\sqrt{x}$ at $a=16$ and also the radius of convergence.
We know that the taylor series of the function $f\left( x \right)$ at $x=a$ is defined as $f\left( x \right)=f\left( a \right)+{{f}^{'}}\left( a \right)\times \dfrac{\left( x-a \right)}{1!}+{{f}^{''}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{2}}}{2!}+.......{{f}^{n}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{n}}}{n!}+.....$.
Now, let us use this result to find the Taylor series for the given function at $a=16$.
$f\left( x \right)=f\left( 16 \right)+{{f}^{'}}\left( 16 \right)\times \dfrac{\left( x-16 \right)}{1!}+{{f}^{''}}\left( 16 \right)\times \dfrac{{{\left( x-16 \right)}^{2}}}{2!}+.......{{f}^{n}}\left( 16 \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+.....$ ---(1).
Now, let us find the derivatives of the functions $f\left( x \right)$.
We have $f\left( x \right)=\sqrt{x}$.
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}$ ---(2).
We know that $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$. Let us use this result in equation (2).
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}$ ---(3).
Now, ${{f}^{''}}\left( x \right)=\dfrac{d\left( \dfrac{1}{2}{{x}^{\dfrac{-1}{2}}} \right)}{dx}$.
$\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{-1}{4}{{x}^{\dfrac{-3}{2}}}$ ---(4).
Now, ${{f}^{3}}\left( x \right)=\dfrac{d\left( \dfrac{-1}{4}{{x}^{\dfrac{-3}{2}}} \right)}{dx}$.
$\Rightarrow {{f}^{3}}\left( x \right)=\dfrac{3}{8}{{x}^{\dfrac{-5}{2}}}$ ---(5).
Now, ${{f}^{4}}\left( x \right)=\dfrac{d\left( \dfrac{3}{8}{{x}^{\dfrac{-5}{2}}} \right)}{dx}$.
$\Rightarrow {{f}^{4}}\left( x \right)=\dfrac{-15}{16}{{x}^{\dfrac{-7}{2}}}$ ---(6).
Similarly, we get ${{f}^{n}}\left( x \right)=\dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{x}^{\dfrac{-2n+3}{2}}}$ ---(7).
Now, let us substitute equations (2), (3), (4), (5), (6), and (7) in equation (1).
$f\left( x \right)=\sqrt{16}+\left( \dfrac{1}{2}{{\left( 16 \right)}^{\dfrac{-1}{2}}} \right)\times \dfrac{\left( x-16 \right)}{1!}+\left( \dfrac{-1}{4}{{\left( 16 \right)}^{\dfrac{-3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{2}}}{2!}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+.....$.
$\Rightarrow f\left( x \right)=4+\dfrac{\left( x-16 \right)}{8}-\dfrac{{{\left( x-16 \right)}^{2}}}{512}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+.....$.
So, we have found the taylor series of the function $f\left( x \right)$ at $x=a$ as
$\Rightarrow f\left( x \right)=4+\dfrac{\left( x-16 \right)}{8}-\dfrac{{{\left( x-16 \right)}^{2}}}{512}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+.....$.
Note: We should perform each step carefully to avoid confusion and calculation mistakes. We should confuse between the variables a and x while solving this type of problem. We can also find the Maclaurin series for the given function $f\left( x \right)$ by taking $a=1$. Similarly, we can expect problems to find the Taylor series of the function $g\left( x \right)=\sin 3x$.
Complete step-by-step solution:
According to the problem, we are asked to find the taylor series for the function $f\left( x \right)=\sqrt{x}$ at $a=16$ and also the radius of convergence.
We know that the taylor series of the function $f\left( x \right)$ at $x=a$ is defined as $f\left( x \right)=f\left( a \right)+{{f}^{'}}\left( a \right)\times \dfrac{\left( x-a \right)}{1!}+{{f}^{''}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{2}}}{2!}+.......{{f}^{n}}\left( a \right)\times \dfrac{{{\left( x-a \right)}^{n}}}{n!}+.....$.
Now, let us use this result to find the Taylor series for the given function at $a=16$.
$f\left( x \right)=f\left( 16 \right)+{{f}^{'}}\left( 16 \right)\times \dfrac{\left( x-16 \right)}{1!}+{{f}^{''}}\left( 16 \right)\times \dfrac{{{\left( x-16 \right)}^{2}}}{2!}+.......{{f}^{n}}\left( 16 \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+.....$ ---(1).
Now, let us find the derivatives of the functions $f\left( x \right)$.
We have $f\left( x \right)=\sqrt{x}$.
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d\left( {{x}^{\dfrac{1}{2}}} \right)}{dx}$ ---(2).
We know that $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$. Let us use this result in equation (2).
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}$ ---(3).
Now, ${{f}^{''}}\left( x \right)=\dfrac{d\left( \dfrac{1}{2}{{x}^{\dfrac{-1}{2}}} \right)}{dx}$.
$\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{-1}{4}{{x}^{\dfrac{-3}{2}}}$ ---(4).
Now, ${{f}^{3}}\left( x \right)=\dfrac{d\left( \dfrac{-1}{4}{{x}^{\dfrac{-3}{2}}} \right)}{dx}$.
$\Rightarrow {{f}^{3}}\left( x \right)=\dfrac{3}{8}{{x}^{\dfrac{-5}{2}}}$ ---(5).
Now, ${{f}^{4}}\left( x \right)=\dfrac{d\left( \dfrac{3}{8}{{x}^{\dfrac{-5}{2}}} \right)}{dx}$.
$\Rightarrow {{f}^{4}}\left( x \right)=\dfrac{-15}{16}{{x}^{\dfrac{-7}{2}}}$ ---(6).
Similarly, we get ${{f}^{n}}\left( x \right)=\dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{x}^{\dfrac{-2n+3}{2}}}$ ---(7).
Now, let us substitute equations (2), (3), (4), (5), (6), and (7) in equation (1).
$f\left( x \right)=\sqrt{16}+\left( \dfrac{1}{2}{{\left( 16 \right)}^{\dfrac{-1}{2}}} \right)\times \dfrac{\left( x-16 \right)}{1!}+\left( \dfrac{-1}{4}{{\left( 16 \right)}^{\dfrac{-3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{2}}}{2!}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+.....$.
$\Rightarrow f\left( x \right)=4+\dfrac{\left( x-16 \right)}{8}-\dfrac{{{\left( x-16 \right)}^{2}}}{512}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+.....$.
So, we have found the taylor series of the function $f\left( x \right)$ at $x=a$ as
$\Rightarrow f\left( x \right)=4+\dfrac{\left( x-16 \right)}{8}-\dfrac{{{\left( x-16 \right)}^{2}}}{512}+.......\left( \dfrac{{{\left( -1 \right)}^{n}}\left( {{2}^{n}}-1 \right)}{\left( {{2}^{n}} \right)}{{\left( 16 \right)}^{\dfrac{-2n+3}{2}}} \right)\times \dfrac{{{\left( x-16 \right)}^{n}}}{n!}+.....$.
Note: We should perform each step carefully to avoid confusion and calculation mistakes. We should confuse between the variables a and x while solving this type of problem. We can also find the Maclaurin series for the given function $f\left( x \right)$ by taking $a=1$. Similarly, we can expect problems to find the Taylor series of the function $g\left( x \right)=\sin 3x$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

