
Write the given cube in expanded form: $$\left( 2p-5\right)^{3} $$
Answer
604.5k+ views
Hint: In this question it is given that we have to find the expanded form of $$\left( 2p-5\right)^{3} $$. So to find the expanded form we need to know the cubic identity, i.e, if any cube of a binomial is given $$\left( a-b\right)^{3} $$ then it can be expanded as,
$$\left( a-b\right)^{3} =a^{3}-3a^{2}b+3ab^{2}-b^{3}$$.....(1)
Complete step-by-step answer:
Given, $$\left( 2p-5\right)^{3} $$
Now comparing the above cube with $$\left( a-b\right)^{3} $$, we can write,
a = 2p and b = 5
Now putting the values of a and b in equation (1), we get,
$$\left( a-b\right)^{3} =a^{3}-3a^{2}b+3ab^{2}-b^{3}$$
$$\Rightarrow \left( 2p-5\right)^{3} =\left( 2p\right)^{3} -3\times \left( 2p\right)^{2} \times 5+3\times \left( 2p\right) \times 5^{2}+5^{3}$$
Now as we know that, $$\left( ab\right)^{n} =a^{n}\times b^{n}$$,
So by the formula we can write the above equation as,
$$\left( 2p-5\right)^{3} =2^{3}\times p^{3}-3\times 2^{2}\times p^{2}\times 5+3\times 2\times p\times 5^{2}+5^{3}$$
$$\Rightarrow \left( 2p-5\right)^{3} =8p^{3}-(3\times 4\times p^{2}\times 5)+(3\times 2\times p\times 25)+125$$ [since, $5^{3} =125$]
$$\Rightarrow \left( 2p-5\right)^{3} =8p^{3}-60p^{2}+150p+125$$
Hence the expanded form of $$\left( 2p-5\right)^{3} $$ is $$8p^{3}-60p^{2}+150p+125$$
Note: If you are asked to find the expanded form of cube of a term by not using the identity, then you can also find the cube of a binomials (2p-5) i.e, $$(2p-5)^{3}$$ just by multiplying the term three times,
$$\left( 2p-5\right)^{3} =\left( 2p-5\right) \left( 2p-5\right) \left( 2p-5\right) $$
Where first multiply the first two binomials and after that multiply the third binomial with the resultant.
$$\left( a-b\right)^{3} =a^{3}-3a^{2}b+3ab^{2}-b^{3}$$.....(1)
Complete step-by-step answer:
Given, $$\left( 2p-5\right)^{3} $$
Now comparing the above cube with $$\left( a-b\right)^{3} $$, we can write,
a = 2p and b = 5
Now putting the values of a and b in equation (1), we get,
$$\left( a-b\right)^{3} =a^{3}-3a^{2}b+3ab^{2}-b^{3}$$
$$\Rightarrow \left( 2p-5\right)^{3} =\left( 2p\right)^{3} -3\times \left( 2p\right)^{2} \times 5+3\times \left( 2p\right) \times 5^{2}+5^{3}$$
Now as we know that, $$\left( ab\right)^{n} =a^{n}\times b^{n}$$,
So by the formula we can write the above equation as,
$$\left( 2p-5\right)^{3} =2^{3}\times p^{3}-3\times 2^{2}\times p^{2}\times 5+3\times 2\times p\times 5^{2}+5^{3}$$
$$\Rightarrow \left( 2p-5\right)^{3} =8p^{3}-(3\times 4\times p^{2}\times 5)+(3\times 2\times p\times 25)+125$$ [since, $5^{3} =125$]
$$\Rightarrow \left( 2p-5\right)^{3} =8p^{3}-60p^{2}+150p+125$$
Hence the expanded form of $$\left( 2p-5\right)^{3} $$ is $$8p^{3}-60p^{2}+150p+125$$
Note: If you are asked to find the expanded form of cube of a term by not using the identity, then you can also find the cube of a binomials (2p-5) i.e, $$(2p-5)^{3}$$ just by multiplying the term three times,
$$\left( 2p-5\right)^{3} =\left( 2p-5\right) \left( 2p-5\right) \left( 2p-5\right) $$
Where first multiply the first two binomials and after that multiply the third binomial with the resultant.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Name 10 Living and Non living things class 9 biology CBSE

Which are the Top 10 Largest States of India?

What were the main changes brought about by the Bolsheviks class 9 social science CBSE

Define development

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE

Degree of the zero polynomial


