
Write the function in the simplest form: ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right),a > 0;\dfrac{{ - a}}{{\sqrt 3 }} \leqslant x \leqslant \dfrac{a}{{\sqrt 3 }}$
Answer
464.7k+ views
Hint:
We will make a suitable substitution for $x$ in terms of ‘$\tan $’ in the given function. Then we will simplify the given function in terms of ‘$\tan $’ in order to apply an appropriate identity. This will give us the simplest form of the function.
Formula used:
We will use the following formulas:
1) $\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$
2) ${\tan ^{ - 1}}(\tan \theta ) = \theta $
Complete step by step solution:
The function given is
${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right),a > 0;\dfrac{{ - a}}{{\sqrt 3 }} \leqslant x \leqslant \dfrac{a}{{\sqrt 3 }}$………………………………………..$\left( 1 \right)$
To simplify the function, we will make a substitution for $x$ in terms of the function ‘$\tan $’ . We make this substitution in order to eliminate the variables $a$ and $x$.
Let us substitute $x = a\tan \theta $ .
Taking $a$ to the other side, we get
$\dfrac{x}{a} = \tan \theta $.
Applying ${\tan ^{ - 1}}$on both sides, we get
${\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) = {\tan ^{ - 1}}(\tan \theta )$.
Using the property ${\tan ^{ - 1}}(\tan \theta ) = \theta $, we have
${\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) = \theta $…………………………………….$\left( 2 \right)$
Substituting $x = a\tan \theta $ in the equation $\left( 1 \right)$, we get ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}(a\tan \theta ) - {{(a\tan \theta )}^3}}}{{{a^3} - 3a{{(a\tan \theta )}^2}}}} \right)$
Expanding the terms in the numerator and denominator on the RHS,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3{a^3}\tan \theta - {a^3}{{\tan }^3}\theta }}{{{a^3} - 3{a^3}{{\tan }^2}\theta }}} \right)\]
Let us take ${a^3}$ common outside from the numerator and denominator on the RHS. Therefore, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{a^3}(3\tan \theta - {{\tan }^3}\theta )}}{{{a^3}(1 - 3{{\tan }^2}\theta )}}} \right)\]
Cancelling out ${a^3}$ from the numerator and denominator, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right)\]
Now, on the RHS, we will use the identity $\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$. Thus, we get
\[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\tan 3\theta } \right)\]……………………………$\left( 3 \right)$
We will use the property ${\tan ^{ - 1}}(\tan \theta ) = \theta $ in equation $\left( 3 \right)$. Therefore,
\[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\tan 3\theta } \right) = 3\theta \] ……………………………$\left( 4 \right)$
Now, we will use equation $\left( 2 \right)$ in equation $\left( 4 \right)$ and finally, we get the simplest form the function as \[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = 3{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\]
Note:
We have used a substitution $x = a\tan \theta $, where $a$ is a constant. If the function was\[{\tan ^{ - 1}}\left( {\dfrac{{3x - {x^3}}}{{1 - 3{x^2}}}} \right)\], where $a = 1$, then the substitution would simply be $x = \tan \theta $. We have used a substitution in terms of $'\tan '$ since the outer function is ${\tan ^{ - 1}}$ also $\tan $ and ${\tan ^{ - 1}}$ are inverse functions.
We use trigonometric identities only in equations where the trigonometric function is present.
We will make a suitable substitution for $x$ in terms of ‘$\tan $’ in the given function. Then we will simplify the given function in terms of ‘$\tan $’ in order to apply an appropriate identity. This will give us the simplest form of the function.
Formula used:
We will use the following formulas:
1) $\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$
2) ${\tan ^{ - 1}}(\tan \theta ) = \theta $
Complete step by step solution:
The function given is
${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right),a > 0;\dfrac{{ - a}}{{\sqrt 3 }} \leqslant x \leqslant \dfrac{a}{{\sqrt 3 }}$………………………………………..$\left( 1 \right)$
To simplify the function, we will make a substitution for $x$ in terms of the function ‘$\tan $’ . We make this substitution in order to eliminate the variables $a$ and $x$.
Let us substitute $x = a\tan \theta $ .
Taking $a$ to the other side, we get
$\dfrac{x}{a} = \tan \theta $.
Applying ${\tan ^{ - 1}}$on both sides, we get
${\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) = {\tan ^{ - 1}}(\tan \theta )$.
Using the property ${\tan ^{ - 1}}(\tan \theta ) = \theta $, we have
${\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) = \theta $…………………………………….$\left( 2 \right)$
Substituting $x = a\tan \theta $ in the equation $\left( 1 \right)$, we get ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}(a\tan \theta ) - {{(a\tan \theta )}^3}}}{{{a^3} - 3a{{(a\tan \theta )}^2}}}} \right)$
Expanding the terms in the numerator and denominator on the RHS,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3{a^3}\tan \theta - {a^3}{{\tan }^3}\theta }}{{{a^3} - 3{a^3}{{\tan }^2}\theta }}} \right)\]
Let us take ${a^3}$ common outside from the numerator and denominator on the RHS. Therefore, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{a^3}(3\tan \theta - {{\tan }^3}\theta )}}{{{a^3}(1 - 3{{\tan }^2}\theta )}}} \right)\]
Cancelling out ${a^3}$ from the numerator and denominator, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right)\]
Now, on the RHS, we will use the identity $\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$. Thus, we get
\[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\tan 3\theta } \right)\]……………………………$\left( 3 \right)$
We will use the property ${\tan ^{ - 1}}(\tan \theta ) = \theta $ in equation $\left( 3 \right)$. Therefore,
\[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\tan 3\theta } \right) = 3\theta \] ……………………………$\left( 4 \right)$
Now, we will use equation $\left( 2 \right)$ in equation $\left( 4 \right)$ and finally, we get the simplest form the function as \[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = 3{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\]
Note:
We have used a substitution $x = a\tan \theta $, where $a$ is a constant. If the function was\[{\tan ^{ - 1}}\left( {\dfrac{{3x - {x^3}}}{{1 - 3{x^2}}}} \right)\], where $a = 1$, then the substitution would simply be $x = \tan \theta $. We have used a substitution in terms of $'\tan '$ since the outer function is ${\tan ^{ - 1}}$ also $\tan $ and ${\tan ^{ - 1}}$ are inverse functions.
We use trigonometric identities only in equations where the trigonometric function is present.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
