
Write the function in the simplest form: ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right),a > 0;\dfrac{{ - a}}{{\sqrt 3 }} \leqslant x \leqslant \dfrac{a}{{\sqrt 3 }}$
Answer
562.8k+ views
Hint:
We will make a suitable substitution for $x$ in terms of ‘$\tan $’ in the given function. Then we will simplify the given function in terms of ‘$\tan $’ in order to apply an appropriate identity. This will give us the simplest form of the function.
Formula used:
We will use the following formulas:
1) $\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$
2) ${\tan ^{ - 1}}(\tan \theta ) = \theta $
Complete step by step solution:
The function given is
${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right),a > 0;\dfrac{{ - a}}{{\sqrt 3 }} \leqslant x \leqslant \dfrac{a}{{\sqrt 3 }}$………………………………………..$\left( 1 \right)$
To simplify the function, we will make a substitution for $x$ in terms of the function ‘$\tan $’ . We make this substitution in order to eliminate the variables $a$ and $x$.
Let us substitute $x = a\tan \theta $ .
Taking $a$ to the other side, we get
$\dfrac{x}{a} = \tan \theta $.
Applying ${\tan ^{ - 1}}$on both sides, we get
${\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) = {\tan ^{ - 1}}(\tan \theta )$.
Using the property ${\tan ^{ - 1}}(\tan \theta ) = \theta $, we have
${\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) = \theta $…………………………………….$\left( 2 \right)$
Substituting $x = a\tan \theta $ in the equation $\left( 1 \right)$, we get ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}(a\tan \theta ) - {{(a\tan \theta )}^3}}}{{{a^3} - 3a{{(a\tan \theta )}^2}}}} \right)$
Expanding the terms in the numerator and denominator on the RHS,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3{a^3}\tan \theta - {a^3}{{\tan }^3}\theta }}{{{a^3} - 3{a^3}{{\tan }^2}\theta }}} \right)\]
Let us take ${a^3}$ common outside from the numerator and denominator on the RHS. Therefore, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{a^3}(3\tan \theta - {{\tan }^3}\theta )}}{{{a^3}(1 - 3{{\tan }^2}\theta )}}} \right)\]
Cancelling out ${a^3}$ from the numerator and denominator, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right)\]
Now, on the RHS, we will use the identity $\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$. Thus, we get
\[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\tan 3\theta } \right)\]……………………………$\left( 3 \right)$
We will use the property ${\tan ^{ - 1}}(\tan \theta ) = \theta $ in equation $\left( 3 \right)$. Therefore,
\[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\tan 3\theta } \right) = 3\theta \] ……………………………$\left( 4 \right)$
Now, we will use equation $\left( 2 \right)$ in equation $\left( 4 \right)$ and finally, we get the simplest form the function as \[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = 3{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\]
Note:
We have used a substitution $x = a\tan \theta $, where $a$ is a constant. If the function was\[{\tan ^{ - 1}}\left( {\dfrac{{3x - {x^3}}}{{1 - 3{x^2}}}} \right)\], where $a = 1$, then the substitution would simply be $x = \tan \theta $. We have used a substitution in terms of $'\tan '$ since the outer function is ${\tan ^{ - 1}}$ also $\tan $ and ${\tan ^{ - 1}}$ are inverse functions.
We use trigonometric identities only in equations where the trigonometric function is present.
We will make a suitable substitution for $x$ in terms of ‘$\tan $’ in the given function. Then we will simplify the given function in terms of ‘$\tan $’ in order to apply an appropriate identity. This will give us the simplest form of the function.
Formula used:
We will use the following formulas:
1) $\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$
2) ${\tan ^{ - 1}}(\tan \theta ) = \theta $
Complete step by step solution:
The function given is
${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right),a > 0;\dfrac{{ - a}}{{\sqrt 3 }} \leqslant x \leqslant \dfrac{a}{{\sqrt 3 }}$………………………………………..$\left( 1 \right)$
To simplify the function, we will make a substitution for $x$ in terms of the function ‘$\tan $’ . We make this substitution in order to eliminate the variables $a$ and $x$.
Let us substitute $x = a\tan \theta $ .
Taking $a$ to the other side, we get
$\dfrac{x}{a} = \tan \theta $.
Applying ${\tan ^{ - 1}}$on both sides, we get
${\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) = {\tan ^{ - 1}}(\tan \theta )$.
Using the property ${\tan ^{ - 1}}(\tan \theta ) = \theta $, we have
${\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) = \theta $…………………………………….$\left( 2 \right)$
Substituting $x = a\tan \theta $ in the equation $\left( 1 \right)$, we get ${\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}(a\tan \theta ) - {{(a\tan \theta )}^3}}}{{{a^3} - 3a{{(a\tan \theta )}^2}}}} \right)$
Expanding the terms in the numerator and denominator on the RHS,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3{a^3}\tan \theta - {a^3}{{\tan }^3}\theta }}{{{a^3} - 3{a^3}{{\tan }^2}\theta }}} \right)\]
Let us take ${a^3}$ common outside from the numerator and denominator on the RHS. Therefore, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{a^3}(3\tan \theta - {{\tan }^3}\theta )}}{{{a^3}(1 - 3{{\tan }^2}\theta )}}} \right)\]
Cancelling out ${a^3}$ from the numerator and denominator, we get
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right)\]
Now, on the RHS, we will use the identity $\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}$. Thus, we get
\[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\tan 3\theta } \right)\]……………………………$\left( 3 \right)$
We will use the property ${\tan ^{ - 1}}(\tan \theta ) = \theta $ in equation $\left( 3 \right)$. Therefore,
\[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\tan 3\theta } \right) = 3\theta \] ……………………………$\left( 4 \right)$
Now, we will use equation $\left( 2 \right)$ in equation $\left( 4 \right)$ and finally, we get the simplest form the function as \[{\tan ^{ - 1}}\left( {\dfrac{{3{a^2}x - {x^3}}}{{{a^3} - 3a{x^2}}}} \right) = 3{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right)\]
Note:
We have used a substitution $x = a\tan \theta $, where $a$ is a constant. If the function was\[{\tan ^{ - 1}}\left( {\dfrac{{3x - {x^3}}}{{1 - 3{x^2}}}} \right)\], where $a = 1$, then the substitution would simply be $x = \tan \theta $. We have used a substitution in terms of $'\tan '$ since the outer function is ${\tan ^{ - 1}}$ also $\tan $ and ${\tan ^{ - 1}}$ are inverse functions.
We use trigonometric identities only in equations where the trigonometric function is present.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

