
Write the expression for Lorentz magnetic force on a particle of charge $q$ moving with velocity $v$ in a magnetic field $B$. Shown that two no work is done by this force on the charged particle.
Answer
570k+ views
Hint
Lorentz force, the force exerted on a charged particle $q$ moving with velocity $v$ through an electric field $E$ and magnetic field $B$. The entire electromagnetic force $F$ on the charged particle is called the Lorentz force.
Complete step by step answer
We know that,
Lorentz force = magnetic force + electric force.
So, now we can say,
$F{\text{ }} = {\text{ }}[{\text{ }}qvb{\text{ }}sin\theta \; + {\text{ }}qe{\text{ }}]$
$ \Rightarrow \vec F = q(\vec V \times \vec B)\;d\vec s$
Now, $\vec F$ is perpendicular to both $\vec V$ and $\vec B$.
If $d\vec s$ is the instantaneous displacement of the change-
Then, $d\vec s$ is also perpendicular to $\vec F$
Now, according to work done formula,
$W = \vec F.d\vec s$
$ \Rightarrow W = Fs\cos {90^0 }$
But, the value of $cos 90^0$ is equal to zero.
So, $W = 0$,
That means the work done is zero and the increase in kinetic energy is zero.
Note
The work is done when a force acts upon an object to cause a displacement. Three quantities must be known in order to calculate the amount of work. Those three quantities are force, displacement and the angle between the force and the displacement.
Lorentz force, the force exerted on a charged particle $q$ moving with velocity $v$ through an electric field $E$ and magnetic field $B$. The entire electromagnetic force $F$ on the charged particle is called the Lorentz force.
Complete step by step answer
We know that,
Lorentz force = magnetic force + electric force.
So, now we can say,
$F{\text{ }} = {\text{ }}[{\text{ }}qvb{\text{ }}sin\theta \; + {\text{ }}qe{\text{ }}]$
$ \Rightarrow \vec F = q(\vec V \times \vec B)\;d\vec s$
Now, $\vec F$ is perpendicular to both $\vec V$ and $\vec B$.
If $d\vec s$ is the instantaneous displacement of the change-
Then, $d\vec s$ is also perpendicular to $\vec F$
Now, according to work done formula,
$W = \vec F.d\vec s$
$ \Rightarrow W = Fs\cos {90^0 }$
But, the value of $cos 90^0$ is equal to zero.
So, $W = 0$,
That means the work done is zero and the increase in kinetic energy is zero.
Note
The work is done when a force acts upon an object to cause a displacement. Three quantities must be known in order to calculate the amount of work. Those three quantities are force, displacement and the angle between the force and the displacement.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

