
Which term of the AP 3, 15, 27, 39, … will be 120 more than its \[{{21}^{st}}\] term?
Answer
519.1k+ views
Hint: We are given an AP as 3, 15, 27, …. We find the common difference (d) and the first term (a). d is given as \[{{a}_{2}}-{{a}_{1}}\] or \[{{a}_{n}}-{{a}_{n-1}}.\] Then using them, we will find the \[{{21}^{st}}\] term using the \[{{n}^{th}}\] term formula that is, \[{{a}_{n}}=a+\left( n-1 \right)d.\] Now, we will add 120 to the \[{{21}^{st}}\] term and consider the sum as the \[{{n}^{th}}\] term and solve further for n using the formula \[{{a}_{n}}=a+\left( n-1 \right)d.\]
Complete step-by-step answer:
We are given an AP as 3, 15, 27, ……
So, its first term is a = 3 and the common difference is
\[d={{a}_{2}}-{{a}_{1}}\]
\[\Rightarrow d=15-3\]
\[\Rightarrow d=12\]
Now, we have to find a term which is 120 more than the \[{{21}^{st}}\] term.
So, first of all, we will find the \[{{21}^{st}}\] term of the AP that is given to us. We know that the \[{{n}^{th}}\] term of the AP is given as
\[{{a}_{n}}=a+\left( n-1 \right)d\]
So using this, we will get the \[{{21}^{st}}\] term as,
\[{{a}_{21}}=a+\left( 21-1 \right)d\]
\[\Rightarrow {{a}_{21}}=a+20d\]
Here, a = 3 and d = 12. So substituting these values in the above equation, we get,
\[\Rightarrow {{a}_{21}}=3+20\times 12\]
\[\Rightarrow {{a}_{21}}=3+240\]
After solving, we get,
\[\Rightarrow {{a}_{21}}=243\]
Now, we will add 120 to the \[{{21}^{st}}\] term. So, we add 120 to 243, we get,
\[243+120=363\]
Now, we will consider that our \[{{n}^{th}}\] term is 363 and we will find n. The \[{{n}^{th}}\] term is given as
\[{{a}_{n}}=a+\left( n-1 \right)d\]
So we have \[{{a}_{n}}\] as 360, a = 3 and d = 12. So, we get,
\[\Rightarrow 363=3+\left( n-1 \right)12\]
Solving further, we get,
\[\Rightarrow 363-3=\left( n-1 \right)12\]
\[\Rightarrow 360=\left( n-1 \right)12\]
Dividing both sides by 12, we get,
\[\Rightarrow \dfrac{360}{12}=\dfrac{\left( n-1 \right)12}{12}\]
\[\Rightarrow 30=n-1\]
\[\Rightarrow n=31\]
Therefore 31 is the required answer. This means that 120 more than \[{{21}^{st}}\] term is \[{{31}^{st}}\] term.
Note: While finding the \[{{n}^{th}}\] term of the AP, always remember that \[{{a}_{n}}=a+\left( n-1 \right)d.\] And for \[{{21}^{st}}\] term, we will get,
\[{{a}_{21}}=a+\left( 21-1 \right)d\]
\[\Rightarrow {{a}_{21}}=a+20d\]
Common mistakes can occur if we write \[{{a}_{21}}\] as a + 21d which is wrong. Also, while solving for n using the \[{{n}^{th}}\] term, we open the bracket of (n – 1) at the last step for easy calculation.
Complete step-by-step answer:
We are given an AP as 3, 15, 27, ……
So, its first term is a = 3 and the common difference is
\[d={{a}_{2}}-{{a}_{1}}\]
\[\Rightarrow d=15-3\]
\[\Rightarrow d=12\]
Now, we have to find a term which is 120 more than the \[{{21}^{st}}\] term.
So, first of all, we will find the \[{{21}^{st}}\] term of the AP that is given to us. We know that the \[{{n}^{th}}\] term of the AP is given as
\[{{a}_{n}}=a+\left( n-1 \right)d\]
So using this, we will get the \[{{21}^{st}}\] term as,
\[{{a}_{21}}=a+\left( 21-1 \right)d\]
\[\Rightarrow {{a}_{21}}=a+20d\]
Here, a = 3 and d = 12. So substituting these values in the above equation, we get,
\[\Rightarrow {{a}_{21}}=3+20\times 12\]
\[\Rightarrow {{a}_{21}}=3+240\]
After solving, we get,
\[\Rightarrow {{a}_{21}}=243\]
Now, we will add 120 to the \[{{21}^{st}}\] term. So, we add 120 to 243, we get,
\[243+120=363\]
Now, we will consider that our \[{{n}^{th}}\] term is 363 and we will find n. The \[{{n}^{th}}\] term is given as
\[{{a}_{n}}=a+\left( n-1 \right)d\]
So we have \[{{a}_{n}}\] as 360, a = 3 and d = 12. So, we get,
\[\Rightarrow 363=3+\left( n-1 \right)12\]
Solving further, we get,
\[\Rightarrow 363-3=\left( n-1 \right)12\]
\[\Rightarrow 360=\left( n-1 \right)12\]
Dividing both sides by 12, we get,
\[\Rightarrow \dfrac{360}{12}=\dfrac{\left( n-1 \right)12}{12}\]
\[\Rightarrow 30=n-1\]
\[\Rightarrow n=31\]
Therefore 31 is the required answer. This means that 120 more than \[{{21}^{st}}\] term is \[{{31}^{st}}\] term.
Note: While finding the \[{{n}^{th}}\] term of the AP, always remember that \[{{a}_{n}}=a+\left( n-1 \right)d.\] And for \[{{21}^{st}}\] term, we will get,
\[{{a}_{21}}=a+\left( 21-1 \right)d\]
\[\Rightarrow {{a}_{21}}=a+20d\]
Common mistakes can occur if we write \[{{a}_{21}}\] as a + 21d which is wrong. Also, while solving for n using the \[{{n}^{th}}\] term, we open the bracket of (n – 1) at the last step for easy calculation.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
river flows through Silent Valley National Park in class 10 social science CBSE

What are the public facilities provided by the government? Also explain each facility

Distinguish between polar molecules and nonpolar m class 10 chemistry CBSE

Show that the points 11 52 and 9 5 are collinear-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE

What is the relation between orthocenter circumcentre class 10 maths CBSE

