
Which term of the A.P 21, 42, 63, 84..…………. is 420?
Answer
603.6k+ views
Hint – In this question use the formula of ${n^{th}}$ term of an A.P which is given as ${a_n} = {a_1} + \left( {n - 1} \right)d$, so use this A.P property to reach the answer.
Given A.P is
21, 42, 63, 84…………….
So, the first term $\left( {{a_1}} \right)$ of this A.P $ = 21$
Common difference (d) of this A.P $ = \left( {42 - 21} \right) = \left( {63 - 42} \right) = 21$
So according to formula of ${n^{th}}$ term of an A.P which is,
${a_n} = {a_1} + \left( {n - 1} \right)d.............\left( 1 \right)$, where n is number of terms.
Now we have to find out which term of this A.P is 420.
$ \Rightarrow {a_n} = 420$
Now from equation (1)
$
420 = 21 + \left( {n - 1} \right)\left( {21} \right) \\
\Rightarrow 21\left( {n - 1} \right) = 420 - 21 = 399 \\
\Rightarrow n - 1 = \frac{{399}}{{21}} = 19 \\
\Rightarrow n = 19 + 1 = 20 \\
$
Therefore 420 is the ${20^{th}}$ term of this A.P.
Note – whenever we face such types of problems the key concept we have to remember is that always recall all the basic formulas of A.P which is stated above, then first find out the first term and common difference of given A.P and substitute these values in the above formula and calculate which term of the A.P is 420.
Given A.P is
21, 42, 63, 84…………….
So, the first term $\left( {{a_1}} \right)$ of this A.P $ = 21$
Common difference (d) of this A.P $ = \left( {42 - 21} \right) = \left( {63 - 42} \right) = 21$
So according to formula of ${n^{th}}$ term of an A.P which is,
${a_n} = {a_1} + \left( {n - 1} \right)d.............\left( 1 \right)$, where n is number of terms.
Now we have to find out which term of this A.P is 420.
$ \Rightarrow {a_n} = 420$
Now from equation (1)
$
420 = 21 + \left( {n - 1} \right)\left( {21} \right) \\
\Rightarrow 21\left( {n - 1} \right) = 420 - 21 = 399 \\
\Rightarrow n - 1 = \frac{{399}}{{21}} = 19 \\
\Rightarrow n = 19 + 1 = 20 \\
$
Therefore 420 is the ${20^{th}}$ term of this A.P.
Note – whenever we face such types of problems the key concept we have to remember is that always recall all the basic formulas of A.P which is stated above, then first find out the first term and common difference of given A.P and substitute these values in the above formula and calculate which term of the A.P is 420.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

