
Which one of the following is homogeneous function?
This question has multiple correct options
A $f\left( x,y \right)=\dfrac{x-y}{{{x}^{2}}+{{y}^{2}}}$
B $f\left( x,y \right)={{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\dfrac{x}{y}$
C $f\left( x,y \right)=x\left( \ln \sqrt{{{x}^{2}}+{{y}^{2}}}-\ln y \right)+y{{e}^{\dfrac{x}{y}}}$
D $f\left( x,y \right)=x\left[ \ln \dfrac{2{{x}^{2}}+{{y}^{2}}}{x}-\ln \left( x+y \right) \right]+{{y}^{2}}\tan \dfrac{x+2y}{3x-y}$
Answer
509.7k+ views
Hint: We solve this question by using the condition of homogeneity to find out the homogeneous functions from the above given options. A homogeneous function is a function that has the scaling property which means that if each of its terms are multiplied by a factor, then the entire function is multiplied by a power of this factor. The condition used for checking homogeneous functions is given by $f\left( hx,hy \right)={{h}^{m}}f\left( x,y \right),$ where $m\in R.$
Complete step by step answer:
In order to solve this question, let us use the condition of homogeneity to check if the given functions are homogeneous. The condition used is represented as $f\left( hx,hy \right)={{h}^{m}}f\left( x,y \right),$ where $m\in R.$ Here, it means that if every individual variable term of the function is scaled up or multiplied by a factor h, then the entire function can be represented as a multiple of this factor h or a power of it ${{h}^{m}}$ such that m is a real number.
Let us solve the first part,
$\Rightarrow f\left( x,y \right)=\dfrac{x-y}{{{x}^{2}}+{{y}^{2}}}$
Let us replace x by hx and y by hy,
$\Rightarrow f\left( hx,hy \right)=\dfrac{hx-hy}{{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}$
Now we take the h common out from the numerator and square the individual terms in the denominator,
$\Rightarrow f\left( hx,hy \right)=\dfrac{h\left( x-y \right)}{{{h}^{2}}{{x}^{2}}+{{h}^{2}}{{y}^{2}}}$
Taking the ${{h}^{2}}$ common out from the denominator,
$\Rightarrow f\left( hx,hy \right)=\dfrac{h\left( x-y \right)}{{{h}^{2}}\left( {{x}^{2}}+{{y}^{2}} \right)}$
Substituting for the original function and the h terms cancel giving us a ${{h}^{-1}}$ in the numerator,
$\Rightarrow f\left( hx,hy \right)={{h}^{-1}}f\left( x,y \right)$
Hence, option A is a homogeneous function.
Let us solve the second part now,
$\Rightarrow f\left( x,y \right)={{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\dfrac{x}{y}$
Let us replace x by hx and y by hy,
$\Rightarrow f\left( hx,hy \right)={{\left( hx \right)}^{\dfrac{1}{3}}}.{{\left( hy \right)}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{hx}{hy} \right)$
Now we take the power of the individual terms and then cancelling the h from the numerator and denominator term of the tan function,
$\Rightarrow f\left( hx,hy \right)={{h}^{\dfrac{1}{3}}}{{x}^{\dfrac{1}{3}}}.{{h}^{-\dfrac{2}{3}}}{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)$
Taking the h terms common out,
$\Rightarrow f\left( hx,hy \right)={{h}^{\dfrac{1}{3}-\dfrac{2}{3}}}{{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)$
Simplifying the power for h,
$\Rightarrow f\left( hx,hy \right)={{h}^{-\dfrac{1}{3}}}{{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)$
Substituting for the original function,
$\Rightarrow f\left( hx,hy \right)={{h}^{-\dfrac{1}{3}}}f\left( x,y \right)$
Hence, option B is a homogeneous function too.
Let us solve the third part now,
$\Rightarrow f\left( x,y \right)=x\left( \ln \sqrt{{{x}^{2}}+{{y}^{2}}}-\ln y \right)+y{{e}^{\dfrac{x}{y}}}$
Let us replace x by hx and y by hy,
$\Rightarrow f\left( hx,hy \right)=hx\left( \ln \sqrt{{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}-\ln hy \right)+hy{{e}^{\dfrac{hx}{hy}}}$
Now we take the ${{h}^{2}}$ term common from inside the root and it comes out of the root as h. Then, we cancel the h in the numerator and denominator in the power of the exponential term.
$\Rightarrow f\left( hx,hy \right)=hx\left( \ln h\sqrt{{{x}^{2}}+{{y}^{2}}}-\ln hy \right)+hy{{e}^{\dfrac{x}{y}}}$
We know that $\ln a-\ln b=\ln \dfrac{a}{b}.$ Using this in the above equation,
$\Rightarrow f\left( hx,hy \right)=hx\left( \ln \dfrac{h\sqrt{{{x}^{2}}+{{y}^{2}}}}{hy} \right)+hy{{e}^{\dfrac{x}{y}}}$
Cancelling the h terms from the numerator and denominator of the ln term,
$\Rightarrow f\left( hx,hy \right)=hx\left( \ln \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)+hy{{e}^{\dfrac{x}{y}}}$
Taking h common out from the first and second terms,
$\Rightarrow f\left( hx,hy \right)=h\left( x\left( \ln \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)+y{{e}^{\dfrac{x}{y}}} \right)$
Using $\ln a-\ln b=\ln \dfrac{a}{b},$ and splitting the ln terms,
$\Rightarrow f\left( hx,hy \right)=h\left( x\left( \ln \sqrt{{{x}^{2}}+{{y}^{2}}}-\ln y \right)+y{{e}^{\dfrac{x}{y}}} \right)$
Substituting the original function,
$\Rightarrow f\left( hx,hy \right)=hf\left( x,y \right)$
Hence, option C is a homogeneous function too.
Next, we consider option D.
$\Rightarrow f\left( x,y \right)=x\left[ \ln \dfrac{2{{x}^{2}}+{{y}^{2}}}{x}-\ln \left( x+y \right) \right]+{{y}^{2}}\tan \dfrac{x+2y}{3x-y}$
Let us replace x by hx and y by hy,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{2{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}{hx}-\ln \left( hx+hy \right) \right]+{{\left( hy \right)}^{2}}\tan \dfrac{hx+2hy}{3hx-hy}$
Taking the ${{h}^{2}}$ term common out from the numerator of the first ln function and cancelling with the one h in the denominator,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{h\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( hx+hy \right) \right]+{{\left( hy \right)}^{2}}\tan \dfrac{hx+2hy}{3hx-hy}$
Taking the h terms common out from the numerator and denominator of the tan function, and using the formula $\ln a-\ln b=\ln \dfrac{a}{b}$ for the two ln functions,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{h\left( 2{{x}^{2}}+{{y}^{2}} \right)}{xh\left( x+y \right)} \right]+{{\left( hy \right)}^{2}}\tan \dfrac{h\left( x+2y \right)}{h\left( 3x-y \right)}$
Cancelling the h terms from the numerator and denominator of the tan function and similarly cancelling the h terms from the numerator and denominator of the ln function,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x\left( x+y \right)} \right]+{{\left( hy \right)}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)}$
Splitting the ln terms using $\ln a-\ln b=\ln \dfrac{a}{b},$ and squaring the h in the second term,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( x+y \right) \right]+{{h}^{2}}{{y}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)}$
Taking the h term common out from both the terms,
$\Rightarrow f\left( hx,hy \right)=h\left( x\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( x+y \right) \right]+h{{y}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)} \right)$
We cannot replace the original function here since there is an additional h term in the second term. Therefore, option D is not a homogeneous function.
Hence, options A, B and C are homogeneous functions.
Note: We need to know the concept of homogeneity to solve such questions. Care must be taken while cancelling the terms of h and we need to use the formula $\ln a-\ln b=\ln \dfrac{a}{b},$ for further simplification of the terms. We need to note that it will not be a homogeneous function if we are not able to replace the original function back in the scaled equation.
Complete step by step answer:
In order to solve this question, let us use the condition of homogeneity to check if the given functions are homogeneous. The condition used is represented as $f\left( hx,hy \right)={{h}^{m}}f\left( x,y \right),$ where $m\in R.$ Here, it means that if every individual variable term of the function is scaled up or multiplied by a factor h, then the entire function can be represented as a multiple of this factor h or a power of it ${{h}^{m}}$ such that m is a real number.
Let us solve the first part,
$\Rightarrow f\left( x,y \right)=\dfrac{x-y}{{{x}^{2}}+{{y}^{2}}}$
Let us replace x by hx and y by hy,
$\Rightarrow f\left( hx,hy \right)=\dfrac{hx-hy}{{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}$
Now we take the h common out from the numerator and square the individual terms in the denominator,
$\Rightarrow f\left( hx,hy \right)=\dfrac{h\left( x-y \right)}{{{h}^{2}}{{x}^{2}}+{{h}^{2}}{{y}^{2}}}$
Taking the ${{h}^{2}}$ common out from the denominator,
$\Rightarrow f\left( hx,hy \right)=\dfrac{h\left( x-y \right)}{{{h}^{2}}\left( {{x}^{2}}+{{y}^{2}} \right)}$
Substituting for the original function and the h terms cancel giving us a ${{h}^{-1}}$ in the numerator,
$\Rightarrow f\left( hx,hy \right)={{h}^{-1}}f\left( x,y \right)$
Hence, option A is a homogeneous function.
Let us solve the second part now,
$\Rightarrow f\left( x,y \right)={{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\dfrac{x}{y}$
Let us replace x by hx and y by hy,
$\Rightarrow f\left( hx,hy \right)={{\left( hx \right)}^{\dfrac{1}{3}}}.{{\left( hy \right)}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{hx}{hy} \right)$
Now we take the power of the individual terms and then cancelling the h from the numerator and denominator term of the tan function,
$\Rightarrow f\left( hx,hy \right)={{h}^{\dfrac{1}{3}}}{{x}^{\dfrac{1}{3}}}.{{h}^{-\dfrac{2}{3}}}{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)$
Taking the h terms common out,
$\Rightarrow f\left( hx,hy \right)={{h}^{\dfrac{1}{3}-\dfrac{2}{3}}}{{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)$
Simplifying the power for h,
$\Rightarrow f\left( hx,hy \right)={{h}^{-\dfrac{1}{3}}}{{x}^{\dfrac{1}{3}}}.{{y}^{-\dfrac{2}{3}}}{{\tan }^{-1}}\left( \dfrac{x}{y} \right)$
Substituting for the original function,
$\Rightarrow f\left( hx,hy \right)={{h}^{-\dfrac{1}{3}}}f\left( x,y \right)$
Hence, option B is a homogeneous function too.
Let us solve the third part now,
$\Rightarrow f\left( x,y \right)=x\left( \ln \sqrt{{{x}^{2}}+{{y}^{2}}}-\ln y \right)+y{{e}^{\dfrac{x}{y}}}$
Let us replace x by hx and y by hy,
$\Rightarrow f\left( hx,hy \right)=hx\left( \ln \sqrt{{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}-\ln hy \right)+hy{{e}^{\dfrac{hx}{hy}}}$
Now we take the ${{h}^{2}}$ term common from inside the root and it comes out of the root as h. Then, we cancel the h in the numerator and denominator in the power of the exponential term.
$\Rightarrow f\left( hx,hy \right)=hx\left( \ln h\sqrt{{{x}^{2}}+{{y}^{2}}}-\ln hy \right)+hy{{e}^{\dfrac{x}{y}}}$
We know that $\ln a-\ln b=\ln \dfrac{a}{b}.$ Using this in the above equation,
$\Rightarrow f\left( hx,hy \right)=hx\left( \ln \dfrac{h\sqrt{{{x}^{2}}+{{y}^{2}}}}{hy} \right)+hy{{e}^{\dfrac{x}{y}}}$
Cancelling the h terms from the numerator and denominator of the ln term,
$\Rightarrow f\left( hx,hy \right)=hx\left( \ln \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)+hy{{e}^{\dfrac{x}{y}}}$
Taking h common out from the first and second terms,
$\Rightarrow f\left( hx,hy \right)=h\left( x\left( \ln \dfrac{\sqrt{{{x}^{2}}+{{y}^{2}}}}{y} \right)+y{{e}^{\dfrac{x}{y}}} \right)$
Using $\ln a-\ln b=\ln \dfrac{a}{b},$ and splitting the ln terms,
$\Rightarrow f\left( hx,hy \right)=h\left( x\left( \ln \sqrt{{{x}^{2}}+{{y}^{2}}}-\ln y \right)+y{{e}^{\dfrac{x}{y}}} \right)$
Substituting the original function,
$\Rightarrow f\left( hx,hy \right)=hf\left( x,y \right)$
Hence, option C is a homogeneous function too.
Next, we consider option D.
$\Rightarrow f\left( x,y \right)=x\left[ \ln \dfrac{2{{x}^{2}}+{{y}^{2}}}{x}-\ln \left( x+y \right) \right]+{{y}^{2}}\tan \dfrac{x+2y}{3x-y}$
Let us replace x by hx and y by hy,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{2{{\left( hx \right)}^{2}}+{{\left( hy \right)}^{2}}}{hx}-\ln \left( hx+hy \right) \right]+{{\left( hy \right)}^{2}}\tan \dfrac{hx+2hy}{3hx-hy}$
Taking the ${{h}^{2}}$ term common out from the numerator of the first ln function and cancelling with the one h in the denominator,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{h\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( hx+hy \right) \right]+{{\left( hy \right)}^{2}}\tan \dfrac{hx+2hy}{3hx-hy}$
Taking the h terms common out from the numerator and denominator of the tan function, and using the formula $\ln a-\ln b=\ln \dfrac{a}{b}$ for the two ln functions,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{h\left( 2{{x}^{2}}+{{y}^{2}} \right)}{xh\left( x+y \right)} \right]+{{\left( hy \right)}^{2}}\tan \dfrac{h\left( x+2y \right)}{h\left( 3x-y \right)}$
Cancelling the h terms from the numerator and denominator of the tan function and similarly cancelling the h terms from the numerator and denominator of the ln function,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x\left( x+y \right)} \right]+{{\left( hy \right)}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)}$
Splitting the ln terms using $\ln a-\ln b=\ln \dfrac{a}{b},$ and squaring the h in the second term,
$\Rightarrow f\left( hx,hy \right)=hx\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( x+y \right) \right]+{{h}^{2}}{{y}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)}$
Taking the h term common out from both the terms,
$\Rightarrow f\left( hx,hy \right)=h\left( x\left[ \ln \dfrac{\left( 2{{x}^{2}}+{{y}^{2}} \right)}{x}-\ln \left( x+y \right) \right]+h{{y}^{2}}\tan \dfrac{\left( x+2y \right)}{\left( 3x-y \right)} \right)$
We cannot replace the original function here since there is an additional h term in the second term. Therefore, option D is not a homogeneous function.
Hence, options A, B and C are homogeneous functions.
Note: We need to know the concept of homogeneity to solve such questions. Care must be taken while cancelling the terms of h and we need to use the formula $\ln a-\ln b=\ln \dfrac{a}{b},$ for further simplification of the terms. We need to note that it will not be a homogeneous function if we are not able to replace the original function back in the scaled equation.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

