
Which of the following values of α satisfy the equation \[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
{{(3+\alpha )}^{2}} & {{(3+2\alpha )}^{2}} & {{(3+3\alpha )}^{2}} \\
\end{matrix} \right|=-648\alpha \]
$\begin{align}
& \text{a) }\text{-4} \\
& \text{b) 9} \\
& \text{c) -9} \\
& \text{d) 4} \\
\end{align}$
Answer
577.5k+ views
Hint: Now in the question we are given with the determinant whose entries are quadratic equations. We will use row and column transformations successively as to bring the determinant is a simpler form and then equate it to the given value of determinant. Hence we will find all the possible solutions of α.
Complete step by step answer:
Now we are given that \[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
{{(3+\alpha )}^{2}} & {{(3+2\alpha )}^{2}} & {{(3+3\alpha )}^{2}} \\
\end{matrix} \right|=-648\alpha \]
Consider \[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
{{(3+\alpha )}^{2}} & {{(3+2\alpha )}^{2}} & {{(3+3\alpha )}^{2}} \\
\end{matrix} \right|\]
To solve this we will use row transformations
Now let us first use the transformation ${{R}_{3}}={{R}_{3}}-{{R}_{2}}$
\[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
{{(3+\alpha )}^{2}}-{{(2+\alpha )}^{2}} & {{(3+2\alpha )}^{2}}-{{(2+2\alpha )}^{2}} & {{(3+3\alpha )}^{2}}-{{(2+3\alpha )}^{2}} \\
\end{matrix} \right|\]
Now we know the formula for ${{(a+b)}^{2}}$ is $({{a}^{2}}+2ab+{{b}^{2}})$. Using this we get
\[\begin{align}
& \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
9+{{\alpha }^{2}}+6\alpha -(4+{{\alpha }^{2}}+4\alpha ) & (9+4{{\alpha }^{2}}+12\alpha )-(4+4{{\alpha }^{2}}+8\alpha ) & (9+9{{\alpha }^{2}}+18\alpha )-(4+9{{\alpha }^{2}}+12\alpha ) \\
\end{matrix} \right| \\
& =\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
(5+2\alpha ) & (5+4\alpha ) & (5+6\alpha ) \\
\end{matrix} \right| \\
\end{align}\]
Now let us first use the transformation ${{R}_{2}}={{R}_{2}}-{{R}_{1}}$ .
\[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}}-{{(1+\alpha )}^{2}} & {{(2+2\alpha )}^{2}}-{{(1+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}}-{{(1+3\alpha )}^{2}} \\
(5+2\alpha ) & (5+4\alpha ) & (5+6\alpha ) \\
\end{matrix} \right|\]
\[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(4+4\alpha +\alpha )}^{2}}-(1+{{\alpha }^{2}}+2\alpha ) & (4+4{{\alpha }^{2}}+8\alpha )-(1+4{{\alpha }^{2}}+4\alpha ) & {{(4+9{{\alpha }^{2}}+12\alpha )}}-{{(1+9{{\alpha }^{2}}+6\alpha )}} \\
(5+2\alpha ) & (5+4\alpha ) & (5+6\alpha ) \\
\end{matrix} \right|\]
\[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
(3+2\alpha ) & (3+4\alpha ) & (3+6\alpha ) \\
(5+2\alpha ) & (5+4\alpha ) & (5+6\alpha ) \\
\end{matrix} \right|\]
Now let us take ${{R}_{3}}={{R}_{3}}-{{R}_{2}}$
\[\begin{align}
& \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
(3+2\alpha ) & (3+4\alpha ) & (3+6\alpha ) \\
(5+2\alpha )-(3+2\alpha ) & (5+4\alpha )-(3+4\alpha ) & (5+6\alpha )-(3+6\alpha ) \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
(3+2\alpha ) & (3+4\alpha ) & (3+6\alpha ) \\
2 & 2 & 2 \\
\end{matrix} \right| \\
\end{align}\]
Now we will do a Column transformation ${{C}_{3}}={{C}_{3}}-{{C}_{2}}$ , hence we get
\[\begin{align}
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}}-{{(1+2\alpha )}^{2}} \\
(3+2\alpha ) & (3+4\alpha ) & (3+6\alpha )-(3+4\alpha ) \\
2 & 2 & 2-2 \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & (1+9{{\alpha }^{2}}+6\alpha )-(1+4{{\alpha }^{2}}+4\alpha ) \\
(3+2\alpha ) & (3+4\alpha ) & 2\alpha \\
2 & 2 & 0 \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & (3+4\alpha ) & (32{{\alpha }^{2}}+24\alpha ) \\
2 & 2 & 0 \\
\end{matrix} \right| \\
\end{align}\]
Now we will do a Column transformation ${{C}_{2}}={{C}_{2}}-{{C}_{1}}$ , hence we get
\[\begin{align}
& \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}}-{{(1+\alpha )}^{2}} & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & (3+4\alpha )-(3+2\alpha ) & 2\alpha \\
2 & 2-2 & 0 \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & (1+4{{\alpha }^{2}}+4\alpha )-(1+{{\alpha }^{2}}+2\alpha ) & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & 2\alpha & 2\alpha \\
2 & 0 & 0 \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & 3{{\alpha }^{2}}+2\alpha & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & 2\alpha & 2\alpha \\
2 & 0 & 0 \\
\end{matrix} \right| \\
\end{align}\]
Now let us evaluate the determinant. Now since we have 2 elements = 0 in row 3 we will open the determinant with respect to third row
$\left| \begin{matrix}
{{(1+\alpha )}^{2}} & 3{{\alpha }^{2}}+2\alpha & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & 2\alpha & 2\alpha \\
2 & 0 & 0 \\
\end{matrix} \right|=2\left[ \left( 3{{\alpha }^{2}}+2\alpha \right)2\alpha -2\alpha (5{{\alpha }^{2}}+2\alpha ) \right]-0+0$
$\begin{align}
& 2(2\alpha )\left[ \left( 3{{\alpha }^{2}}+2\alpha \right)-(5{{\alpha }^{2}}+2\alpha ) \right] \\
& =4\alpha [-2{{\alpha }^{2}}] \\
& =-8{{\alpha }^{3}} \\
\end{align}$
Now we are given that the value of determinant is equal to $-648\alpha $
$-8{{\alpha }^{3}}=-648\alpha $
Multiplying – 1 to the equation we get
$8{{\alpha }^{3}}=648\alpha $
Now let us divide the equation by $8\alpha $, hence we get.
${{\alpha }^{2}}=81$
Hence the value of $\alpha $ will be $\alpha =\sqrt{81}=\pm 9$
So, the correct answer is “Option B and C”.
Note: Now when we Solve the determinant we get the $-8{{\alpha }^{3}}=-648\alpha $. After this step we have divided the equation by 8α. We can only do this if α is not equal to zero. Hence we have assumed that α is not equal to zero or else we have α = 0 also as solution of $-8{{\alpha }^{3}}=-648\alpha $
Complete step by step answer:
Now we are given that \[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
{{(3+\alpha )}^{2}} & {{(3+2\alpha )}^{2}} & {{(3+3\alpha )}^{2}} \\
\end{matrix} \right|=-648\alpha \]
Consider \[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
{{(3+\alpha )}^{2}} & {{(3+2\alpha )}^{2}} & {{(3+3\alpha )}^{2}} \\
\end{matrix} \right|\]
To solve this we will use row transformations
Now let us first use the transformation ${{R}_{3}}={{R}_{3}}-{{R}_{2}}$
\[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
{{(3+\alpha )}^{2}}-{{(2+\alpha )}^{2}} & {{(3+2\alpha )}^{2}}-{{(2+2\alpha )}^{2}} & {{(3+3\alpha )}^{2}}-{{(2+3\alpha )}^{2}} \\
\end{matrix} \right|\]
Now we know the formula for ${{(a+b)}^{2}}$ is $({{a}^{2}}+2ab+{{b}^{2}})$. Using this we get
\[\begin{align}
& \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
9+{{\alpha }^{2}}+6\alpha -(4+{{\alpha }^{2}}+4\alpha ) & (9+4{{\alpha }^{2}}+12\alpha )-(4+4{{\alpha }^{2}}+8\alpha ) & (9+9{{\alpha }^{2}}+18\alpha )-(4+9{{\alpha }^{2}}+12\alpha ) \\
\end{matrix} \right| \\
& =\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}} & {{(2+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}} \\
(5+2\alpha ) & (5+4\alpha ) & (5+6\alpha ) \\
\end{matrix} \right| \\
\end{align}\]
Now let us first use the transformation ${{R}_{2}}={{R}_{2}}-{{R}_{1}}$ .
\[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(2+\alpha )}^{2}}-{{(1+\alpha )}^{2}} & {{(2+2\alpha )}^{2}}-{{(1+2\alpha )}^{2}} & {{(2+3\alpha )}^{2}}-{{(1+3\alpha )}^{2}} \\
(5+2\alpha ) & (5+4\alpha ) & (5+6\alpha ) \\
\end{matrix} \right|\]
\[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
{{(4+4\alpha +\alpha )}^{2}}-(1+{{\alpha }^{2}}+2\alpha ) & (4+4{{\alpha }^{2}}+8\alpha )-(1+4{{\alpha }^{2}}+4\alpha ) & {{(4+9{{\alpha }^{2}}+12\alpha )}}-{{(1+9{{\alpha }^{2}}+6\alpha )}} \\
(5+2\alpha ) & (5+4\alpha ) & (5+6\alpha ) \\
\end{matrix} \right|\]
\[\left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
(3+2\alpha ) & (3+4\alpha ) & (3+6\alpha ) \\
(5+2\alpha ) & (5+4\alpha ) & (5+6\alpha ) \\
\end{matrix} \right|\]
Now let us take ${{R}_{3}}={{R}_{3}}-{{R}_{2}}$
\[\begin{align}
& \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
(3+2\alpha ) & (3+4\alpha ) & (3+6\alpha ) \\
(5+2\alpha )-(3+2\alpha ) & (5+4\alpha )-(3+4\alpha ) & (5+6\alpha )-(3+6\alpha ) \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}} \\
(3+2\alpha ) & (3+4\alpha ) & (3+6\alpha ) \\
2 & 2 & 2 \\
\end{matrix} \right| \\
\end{align}\]
Now we will do a Column transformation ${{C}_{3}}={{C}_{3}}-{{C}_{2}}$ , hence we get
\[\begin{align}
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & {{(1+3\alpha )}^{2}}-{{(1+2\alpha )}^{2}} \\
(3+2\alpha ) & (3+4\alpha ) & (3+6\alpha )-(3+4\alpha ) \\
2 & 2 & 2-2 \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & (1+9{{\alpha }^{2}}+6\alpha )-(1+4{{\alpha }^{2}}+4\alpha ) \\
(3+2\alpha ) & (3+4\alpha ) & 2\alpha \\
2 & 2 & 0 \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}} & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & (3+4\alpha ) & (32{{\alpha }^{2}}+24\alpha ) \\
2 & 2 & 0 \\
\end{matrix} \right| \\
\end{align}\]
Now we will do a Column transformation ${{C}_{2}}={{C}_{2}}-{{C}_{1}}$ , hence we get
\[\begin{align}
& \left| \begin{matrix}
{{(1+\alpha )}^{2}} & {{(1+2\alpha )}^{2}}-{{(1+\alpha )}^{2}} & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & (3+4\alpha )-(3+2\alpha ) & 2\alpha \\
2 & 2-2 & 0 \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & (1+4{{\alpha }^{2}}+4\alpha )-(1+{{\alpha }^{2}}+2\alpha ) & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & 2\alpha & 2\alpha \\
2 & 0 & 0 \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
{{(1+\alpha )}^{2}} & 3{{\alpha }^{2}}+2\alpha & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & 2\alpha & 2\alpha \\
2 & 0 & 0 \\
\end{matrix} \right| \\
\end{align}\]
Now let us evaluate the determinant. Now since we have 2 elements = 0 in row 3 we will open the determinant with respect to third row
$\left| \begin{matrix}
{{(1+\alpha )}^{2}} & 3{{\alpha }^{2}}+2\alpha & (5{{\alpha }^{2}}+2\alpha ) \\
(3+2\alpha ) & 2\alpha & 2\alpha \\
2 & 0 & 0 \\
\end{matrix} \right|=2\left[ \left( 3{{\alpha }^{2}}+2\alpha \right)2\alpha -2\alpha (5{{\alpha }^{2}}+2\alpha ) \right]-0+0$
$\begin{align}
& 2(2\alpha )\left[ \left( 3{{\alpha }^{2}}+2\alpha \right)-(5{{\alpha }^{2}}+2\alpha ) \right] \\
& =4\alpha [-2{{\alpha }^{2}}] \\
& =-8{{\alpha }^{3}} \\
\end{align}$
Now we are given that the value of determinant is equal to $-648\alpha $
$-8{{\alpha }^{3}}=-648\alpha $
Multiplying – 1 to the equation we get
$8{{\alpha }^{3}}=648\alpha $
Now let us divide the equation by $8\alpha $, hence we get.
${{\alpha }^{2}}=81$
Hence the value of $\alpha $ will be $\alpha =\sqrt{81}=\pm 9$
So, the correct answer is “Option B and C”.
Note: Now when we Solve the determinant we get the $-8{{\alpha }^{3}}=-648\alpha $. After this step we have divided the equation by 8α. We can only do this if α is not equal to zero. Hence we have assumed that α is not equal to zero or else we have α = 0 also as solution of $-8{{\alpha }^{3}}=-648\alpha $
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

