
Which of the following is/are correct graph for photoelectric effect?
(A)
(B)
(C )
(D)
Answer
563.7k+ views
Hint: Kinetic energy is directly proportional to the frequency. The stopping potential depends on the frequency of incident light and nature of emitter material. Frequency of incident light is independent of its intensity. The stopping potential is directly associated with the maximum kinetic energy of electrons emitted.
Formula used:
$e{{V}_{0}}={{K}_{\max }}=hv-\varphi $
where, $\varphi $ is the work function.
$e$ is the charge of electron
${{V}_{0}}$ is the stopping potential
$h$ is the Planck’s constant
$v$ is the frequency of light
Complete step by step answer:
We know that,
$e{{V}_{0}}={{K}_{\max }}=hv-\varphi $
Hence, as $v$ increases both ${{V}_{0}}$ and ${{K}_{\max }}$ increases. Frequency of X –ray is greater than ultraviolet rays. Hence both ${{V}_{0}}$ and ${{K}_{\max }}$ increases.
When light energy falls on a metal surface electrons are emitted from it . The emitted electrons are called photoelectrons. This process is called the photoelectric effect. Einstein got the Nobel prize for the discovery of the photoelectric effect.
But KE have value from zero to ${{K}_{\max }}$due to the loss of energy due to subsequent collisions before getting ejected and not due to range of frequencies within the incident light.
So, the correct answer is “Option B and C”.
Additional Information: Some important conclusions arrived from photoelectric effect are,
(1) The energy distribution of the photoelectrons is independent of the intensity of incident light.
(2) The maximum kinetic energy of the photoelectrons is proportional to the frequency of the incident radiation.
(3) Photoelectrons are not emitted if the frequency of light is below the threshold value.
(4) There seems to be no time lag between the onset of radiation and the resulting photoelectric current.
Note: Kinetic energy is directly proportional to the frequency. The stopping potential depends on the frequency of incident light and nature of emitter material. When the ultraviolet light is replaced by X-rays, both ${{V}_{0}}$ and ${{K}_{\max }}$ increase. But kinetic energy has value from zero to ${{K}_{\max }}$ because of the loss of energy due to collisions before getting ejected and not due to range of frequencies in the incident light.
Formula used:
$e{{V}_{0}}={{K}_{\max }}=hv-\varphi $
where, $\varphi $ is the work function.
$e$ is the charge of electron
${{V}_{0}}$ is the stopping potential
$h$ is the Planck’s constant
$v$ is the frequency of light
Complete step by step answer:
We know that,
$e{{V}_{0}}={{K}_{\max }}=hv-\varphi $
Hence, as $v$ increases both ${{V}_{0}}$ and ${{K}_{\max }}$ increases. Frequency of X –ray is greater than ultraviolet rays. Hence both ${{V}_{0}}$ and ${{K}_{\max }}$ increases.
When light energy falls on a metal surface electrons are emitted from it . The emitted electrons are called photoelectrons. This process is called the photoelectric effect. Einstein got the Nobel prize for the discovery of the photoelectric effect.
But KE have value from zero to ${{K}_{\max }}$due to the loss of energy due to subsequent collisions before getting ejected and not due to range of frequencies within the incident light.
So, the correct answer is “Option B and C”.
Additional Information: Some important conclusions arrived from photoelectric effect are,
(1) The energy distribution of the photoelectrons is independent of the intensity of incident light.
(2) The maximum kinetic energy of the photoelectrons is proportional to the frequency of the incident radiation.
(3) Photoelectrons are not emitted if the frequency of light is below the threshold value.
(4) There seems to be no time lag between the onset of radiation and the resulting photoelectric current.
Note: Kinetic energy is directly proportional to the frequency. The stopping potential depends on the frequency of incident light and nature of emitter material. When the ultraviolet light is replaced by X-rays, both ${{V}_{0}}$ and ${{K}_{\max }}$ increase. But kinetic energy has value from zero to ${{K}_{\max }}$ because of the loss of energy due to collisions before getting ejected and not due to range of frequencies in the incident light.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

