
Which of the following is the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test.
A. $\dfrac{11}{64}$
B. $\dfrac{11}{32}$
C. $\dfrac{11}{16}$
D. $\dfrac{27}{32}$
Answer
578.1k+ views
Hint: To find the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test, we will find the probability of an answer being true, that is, \[P\left( T \right)=\dfrac{1}{2}\] and probability of an answer being false, that is, \[P\left( F \right)=\dfrac{1}{2}\] . Probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test can be written as $P\left( X\ge 7 \right)=P\left( X=7 \right)+P\left( X=8 \right)+P\left( X=9 \right)+P\left( X=10 \right)$ . We will use the formula $P\left( X=r \right){{=}^{n}}{{C}_{r}}{{p}^{r}}{{q}^{n-r}}$ to find the required probability.
Complete step by step answer:
We have to find the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test.
We know that the probability of an event is given by
$P\left( E \right)=\dfrac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}$
Let us find the probability of an answer being true. We know that the total number of outcomes is 2 since either true or false can occur.
\[\Rightarrow P\left( T \right)=\dfrac{1}{2}\]
Now, let’s find the probability of an answer being false.
\[\Rightarrow P\left( F \right)=\dfrac{1}{2}\]
We have to find the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test, that is, $P\left( X\ge 7 \right)$ .
We can write $P\left( X\ge 7 \right)$ as shown below.
$P\left( X\ge 7 \right)=P\left( X=7 \right)+P\left( X=8 \right)+P\left( X=9 \right)+P\left( X=10 \right)$
We know that the binomial distribution formula is for any random variable X, given by;
$P\left( X=r \right){{=}^{n}}{{C}_{r}}{{p}^{r}}{{q}^{n-r}}...(i)$
where n is the number of experiments
r = 0, 1, 2, 3, 4, …
p = Probability of Success in a single experiment
q = Probability of Failure in a single experiment = 1 – p
Let us consider \[P\left( T \right)=p=\dfrac{1}{2}\] and $q=1-p=\dfrac{1}{2}=P\left( F \right)$
Let us now find $P\left( X\ge 7 \right)$ using (i).
$P\left( X\ge 7 \right)=P\left( X=7 \right)+P\left( X=8 \right)+P\left( X=9 \right)+P\left( X=10 \right)$
\[\Rightarrow P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7}}{{\left( \dfrac{1}{2} \right)}^{10-7}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8}}{{\left( \dfrac{1}{2} \right)}^{10-8}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9}}{{\left( \dfrac{1}{2} \right)}^{10-9}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}{{\left( \dfrac{1}{2} \right)}^{10-10}}\]
Let us now solve the powers. We will get
\[P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7}}{{\left( \dfrac{1}{2} \right)}^{3}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8}}{{\left( \dfrac{1}{2} \right)}^{2}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9}}{{\left( \dfrac{1}{2} \right)}^{1}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}{{\left( \dfrac{1}{2} \right)}^{0}}\]
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ and ${{a}^{0}}=1$ . Hence, the above equation can be written as
\[P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7+3}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8+2}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9+1}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us simplify the powers. We will get
\[P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}\]
From the above equation, we can see that \[{{\left( \dfrac{1}{2} \right)}^{10}}\] is common. Let us take it outside.
\[\Rightarrow P\left( X\ge 7 \right)=\left( ^{10}{{C}_{7}}{{+}^{10}}{{C}_{8}}{{+}^{10}}{{C}_{9}}{{+}^{10}}{{C}_{10}} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
We know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Let’s expand the above terms. We will get
\[P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!\left( 10-7 \right)!}+\dfrac{10!}{8!\left( 10-8 \right)!}+\dfrac{10!}{9!\left( 10-9 \right)!}+\dfrac{10!}{10!\left( 10-10 \right)!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
\[\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8!2!}+\dfrac{10!}{9!1!}+\dfrac{10!}{10!0!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
We know that 0!=1. Hence, the above equation becomes
\[P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8!2!}+\dfrac{10!}{9!1!}+\dfrac{10!}{10!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us expand the factorial. We will get
\[P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8\times 7!2!}+\dfrac{10!}{9\times 8\times 7!}+\dfrac{10!}{10\times 9\times 8\times 7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
We can take 10! Common from the numerator and 7! common from the denominator. We will get
\[P\left( X\ge 7 \right)=\left( \dfrac{1}{3!}+\dfrac{1}{8\times 2!}+\dfrac{1}{9\times 8}+\dfrac{1}{10\times 9\times 8} \right)\left( \dfrac{10!}{7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us expand the factorials.
\[\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{1}{3\times 2\times 1}+\dfrac{1}{8\times 2\times 1}+\dfrac{1}{9\times 8}+\dfrac{1}{10\times 9\times 8} \right)\left( \dfrac{10\times 9\times 8\times 7!}{7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
Let’s simplify the denominators and cancel the common terms.
\[\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{1}{6}+\dfrac{1}{16}+\dfrac{1}{72}+\dfrac{1}{720} \right)10\times 9\times 8\times {{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us take the LCM and simplify.
\[P\left( X\ge 7 \right)=\left( \dfrac{1\times 120}{6\times 120}+\dfrac{1\times 45}{16\times 45}+\dfrac{1\times 10}{72\times 10}+\dfrac{1}{720} \right)720\times {{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us solve this.
\[\begin{align}
& P\left( X\ge 7 \right)=\left( \dfrac{120+45+10+1}{720} \right)720{{\left( \dfrac{1}{2} \right)}^{10}} \\
& \Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{176}{720} \right)720{{\left( \dfrac{1}{2} \right)}^{10}} \\
\end{align}\]
Let us cancel the common factors. We will get
\[P\left( X\ge 7 \right)=176\times {{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us expand \[{{\left( \dfrac{1}{2} \right)}^{10}}\] . We will get
\[\begin{align}
& P\left( X\ge 7 \right)=\dfrac{176}{1024} \\
& \Rightarrow P\left( X\ge 7 \right)=\dfrac{11}{64} \\
\end{align}\]
So, the correct answer is “Option A”.
Note: You may mistake when writing the formula for $P\left( X=r \right)$ as $^{n}{{C}_{r}}{{p}^{r}}{{q}^{n+r}}$ . Also, there can be mistake when writing the formula for $^{n}{{C}_{r}}$ as $\dfrac{n!}{r!\left( n+r \right)!}$ . You may write the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test as $P\left( X\le 7 \right)$ which will lead to an incorrect solution. You must know the rules of exponents in order to solve the exponent numbers.
Complete step by step answer:
We have to find the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test.
We know that the probability of an event is given by
$P\left( E \right)=\dfrac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}$
Let us find the probability of an answer being true. We know that the total number of outcomes is 2 since either true or false can occur.
\[\Rightarrow P\left( T \right)=\dfrac{1}{2}\]
Now, let’s find the probability of an answer being false.
\[\Rightarrow P\left( F \right)=\dfrac{1}{2}\]
We have to find the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test, that is, $P\left( X\ge 7 \right)$ .
We can write $P\left( X\ge 7 \right)$ as shown below.
$P\left( X\ge 7 \right)=P\left( X=7 \right)+P\left( X=8 \right)+P\left( X=9 \right)+P\left( X=10 \right)$
We know that the binomial distribution formula is for any random variable X, given by;
$P\left( X=r \right){{=}^{n}}{{C}_{r}}{{p}^{r}}{{q}^{n-r}}...(i)$
where n is the number of experiments
r = 0, 1, 2, 3, 4, …
p = Probability of Success in a single experiment
q = Probability of Failure in a single experiment = 1 – p
Let us consider \[P\left( T \right)=p=\dfrac{1}{2}\] and $q=1-p=\dfrac{1}{2}=P\left( F \right)$
Let us now find $P\left( X\ge 7 \right)$ using (i).
$P\left( X\ge 7 \right)=P\left( X=7 \right)+P\left( X=8 \right)+P\left( X=9 \right)+P\left( X=10 \right)$
\[\Rightarrow P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7}}{{\left( \dfrac{1}{2} \right)}^{10-7}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8}}{{\left( \dfrac{1}{2} \right)}^{10-8}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9}}{{\left( \dfrac{1}{2} \right)}^{10-9}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}{{\left( \dfrac{1}{2} \right)}^{10-10}}\]
Let us now solve the powers. We will get
\[P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7}}{{\left( \dfrac{1}{2} \right)}^{3}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8}}{{\left( \dfrac{1}{2} \right)}^{2}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9}}{{\left( \dfrac{1}{2} \right)}^{1}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}{{\left( \dfrac{1}{2} \right)}^{0}}\]
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ and ${{a}^{0}}=1$ . Hence, the above equation can be written as
\[P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{7+3}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{8+2}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{9+1}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us simplify the powers. We will get
\[P\left( X\ge 7 \right){{=}^{10}}{{C}_{7}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{8}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{9}}{{\left( \dfrac{1}{2} \right)}^{10}}{{+}^{10}}{{C}_{10}}{{\left( \dfrac{1}{2} \right)}^{10}}\]
From the above equation, we can see that \[{{\left( \dfrac{1}{2} \right)}^{10}}\] is common. Let us take it outside.
\[\Rightarrow P\left( X\ge 7 \right)=\left( ^{10}{{C}_{7}}{{+}^{10}}{{C}_{8}}{{+}^{10}}{{C}_{9}}{{+}^{10}}{{C}_{10}} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
We know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Let’s expand the above terms. We will get
\[P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!\left( 10-7 \right)!}+\dfrac{10!}{8!\left( 10-8 \right)!}+\dfrac{10!}{9!\left( 10-9 \right)!}+\dfrac{10!}{10!\left( 10-10 \right)!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
\[\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8!2!}+\dfrac{10!}{9!1!}+\dfrac{10!}{10!0!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
We know that 0!=1. Hence, the above equation becomes
\[P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8!2!}+\dfrac{10!}{9!1!}+\dfrac{10!}{10!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us expand the factorial. We will get
\[P\left( X\ge 7 \right)=\left( \dfrac{10!}{7!3!}+\dfrac{10!}{8\times 7!2!}+\dfrac{10!}{9\times 8\times 7!}+\dfrac{10!}{10\times 9\times 8\times 7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
We can take 10! Common from the numerator and 7! common from the denominator. We will get
\[P\left( X\ge 7 \right)=\left( \dfrac{1}{3!}+\dfrac{1}{8\times 2!}+\dfrac{1}{9\times 8}+\dfrac{1}{10\times 9\times 8} \right)\left( \dfrac{10!}{7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us expand the factorials.
\[\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{1}{3\times 2\times 1}+\dfrac{1}{8\times 2\times 1}+\dfrac{1}{9\times 8}+\dfrac{1}{10\times 9\times 8} \right)\left( \dfrac{10\times 9\times 8\times 7!}{7!} \right){{\left( \dfrac{1}{2} \right)}^{10}}\]
Let’s simplify the denominators and cancel the common terms.
\[\Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{1}{6}+\dfrac{1}{16}+\dfrac{1}{72}+\dfrac{1}{720} \right)10\times 9\times 8\times {{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us take the LCM and simplify.
\[P\left( X\ge 7 \right)=\left( \dfrac{1\times 120}{6\times 120}+\dfrac{1\times 45}{16\times 45}+\dfrac{1\times 10}{72\times 10}+\dfrac{1}{720} \right)720\times {{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us solve this.
\[\begin{align}
& P\left( X\ge 7 \right)=\left( \dfrac{120+45+10+1}{720} \right)720{{\left( \dfrac{1}{2} \right)}^{10}} \\
& \Rightarrow P\left( X\ge 7 \right)=\left( \dfrac{176}{720} \right)720{{\left( \dfrac{1}{2} \right)}^{10}} \\
\end{align}\]
Let us cancel the common factors. We will get
\[P\left( X\ge 7 \right)=176\times {{\left( \dfrac{1}{2} \right)}^{10}}\]
Let us expand \[{{\left( \dfrac{1}{2} \right)}^{10}}\] . We will get
\[\begin{align}
& P\left( X\ge 7 \right)=\dfrac{176}{1024} \\
& \Rightarrow P\left( X\ge 7 \right)=\dfrac{11}{64} \\
\end{align}\]
So, the correct answer is “Option A”.
Note: You may mistake when writing the formula for $P\left( X=r \right)$ as $^{n}{{C}_{r}}{{p}^{r}}{{q}^{n+r}}$ . Also, there can be mistake when writing the formula for $^{n}{{C}_{r}}$ as $\dfrac{n!}{r!\left( n+r \right)!}$ . You may write the probability of guessing correctly at least 7 out of 10 answers in a "True" or "False" test as $P\left( X\le 7 \right)$ which will lead to an incorrect solution. You must know the rules of exponents in order to solve the exponent numbers.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

