
Which of the following is not an odd function?
This question has multiple correct options
(a) $\ln \left( \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}+x+1 \right)}^{2}}} \right)$
(b) $\sin \left( \sin \left( x \right) \right)$
(c) $\sin \left( \tan x \right)$
(d) $f\left( x \right)$, where $f\left( x \right)+f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)\forall x\in R-\left[ 0 \right]$ and $f\left( 2 \right)=33$
Answer
567.3k+ views
Hint: In this question, we need to check every option by using the principle formula of the odd function, $f\left( -x \right)=-f\left( x \right)$. If we check every option according to this condition, we will be able to figure out which option is an odd function or which options are not an odd function.
Complete step-by-step solution
We will be checking all the options to check whether they are an odd function or they are not an odd function.
To be an odd function, the particular function should satisfy the condition, $f\left( -x \right)=-f\left( x \right)$.
For option (a):
$f\left( x \right)=\ln \left( \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}+x+1 \right)}^{2}}} \right)$
$f\left( -x \right)=\ln \left[ \dfrac{{{\left( -x \right)}^{4}}+{{\left( -x \right)}^{2}}+1}{{{\left( {{\left( -x \right)}^{2}}+\left( -x \right)+1 \right)}^{2}}} \right]$
Now, we know that, if we have ${{\left( -x \right)}^{n}}$, the term $x$ is positive when $n$ is an even number and it is negative when $n$ is an odd number.
We get,
$\begin{align}
& f\left( -x \right)=\ln \left[ \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}-x+1 \right)}^{2}}} \right] \\
& f\left( -x \right)\ne -f\left( x \right)
\end{align}$
Therefore, the option (a) is not an odd function.
For option (b):
$f\left( x \right)=\sin \left( \sin \left( x \right) \right)$
We know, that $\sin \left( -x \right)=-\sin \left( x \right)$ means sine is an odd function, therefore,
$\begin{align}
& f\left( -x \right)=\sin \left( \sin \left( -x \right) \right) \\
& =\sin \left( -\sin \left( x \right) \right) \\
& =-\sin \left( \sin \left( x \right) \right)
\end{align}$
$f\left( -x \right)=-f\left( x \right)$
For option (c):
$f\left( x \right)=\sin \left( \tan \left( x \right) \right)$
$f\left( -x \right)=\sin \left( \tan \left( -x \right) \right)$………….…. (1)
Now, we know, $\tan x=\dfrac{\sin x}{\cos x}$
If we consider $f\left( -x \right)=\tan \left( -x \right)$
$\begin{align}
& \tan \left( -x \right)=\dfrac{\sin \left( -x \right)}{\cos \left( -x \right)} \\
& =\dfrac{-\sin x}{\cos x} \\
& =-\tan x
\end{align}$
Therefore, $f\left( -x \right)=-f\left( x \right)$
From (1), we get
$\begin{align}
& f\left( -x \right)=\sin \left( -\tan x \right) \\
& =-\sin \left( \tan x \right)
\end{align}$
Therefore, $f\left( -x \right)=-f\left( x \right)$
Therefore, option (c) is also an odd function.
For option (d):
$f\left( x \right)+f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)$ ……………….… (2)
we also have $f\left( 2 \right)=33$
Let us substitute $x=2$ we get
$\begin{align}
& f\left( 2 \right)+f\left( \dfrac{1}{2} \right)=f\left( 2 \right)\cdot f\left( \dfrac{1}{2} \right) \\
& \left( 33 \right)+f\left( \dfrac{1}{2} \right)=33\cdot f\left( \dfrac{1}{2} \right) \\
& 33=33f\left( \dfrac{1}{2} \right)-f\left( \dfrac{1}{2} \right) \\
& 33=f\left( \dfrac{1}{2} \right)\left[ 33-1 \right] \\
& 33=32f\left( \dfrac{1}{2} \right) \\
& f\left( \dfrac{1}{2} \right)=\dfrac{33}{32}
\end{align}$
Now, let us consider, $f\left( x \right)$ is an odd function
$\begin{align}
& f\left( -x \right)+f\left( \dfrac{1}{-x} \right)=f\left( -x \right)\cdot f\left( \dfrac{1}{-x} \right) \\
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=-f\left( x \right)\times -f\left( \dfrac{1}{x} \right) \\
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)
\end{align}$
From equation (2), we get
$\begin{align}
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right) \\
& f\left( x \right)+f\left( \dfrac{1}{x} \right)+f\left( x \right)+f\left( \dfrac{1}{x} \right)=0 \\
& 2\left[ f\left( x \right)+f\left( \dfrac{1}{x} \right) \right]=0 \\
& f\left( x \right)+f\left( \dfrac{1}{x} \right)=0 \\
& f\left( x \right)=-f\left( \dfrac{1}{x} \right)
\end{align}$
But we know, $f\left( 2 \right)\ne -f\left( \dfrac{1}{2} \right)$
Therefore, this option is not an odd function.
Hence, options (a) and (d) are the functions which are not odd functions.
Note: Odd function has a condition to satisfy, which is $f\left( -x \right)=-f\left( x \right)$. Similarly, to check whether a function is an even function, you simply need to follow $f\left( -x \right)=f\left( x \right)$, $\cos x$ which we used in the question is the most commonly known even function.
Complete step-by-step solution
We will be checking all the options to check whether they are an odd function or they are not an odd function.
To be an odd function, the particular function should satisfy the condition, $f\left( -x \right)=-f\left( x \right)$.
For option (a):
$f\left( x \right)=\ln \left( \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}+x+1 \right)}^{2}}} \right)$
$f\left( -x \right)=\ln \left[ \dfrac{{{\left( -x \right)}^{4}}+{{\left( -x \right)}^{2}}+1}{{{\left( {{\left( -x \right)}^{2}}+\left( -x \right)+1 \right)}^{2}}} \right]$
Now, we know that, if we have ${{\left( -x \right)}^{n}}$, the term $x$ is positive when $n$ is an even number and it is negative when $n$ is an odd number.
We get,
$\begin{align}
& f\left( -x \right)=\ln \left[ \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}-x+1 \right)}^{2}}} \right] \\
& f\left( -x \right)\ne -f\left( x \right)
\end{align}$
Therefore, the option (a) is not an odd function.
For option (b):
$f\left( x \right)=\sin \left( \sin \left( x \right) \right)$
We know, that $\sin \left( -x \right)=-\sin \left( x \right)$ means sine is an odd function, therefore,
$\begin{align}
& f\left( -x \right)=\sin \left( \sin \left( -x \right) \right) \\
& =\sin \left( -\sin \left( x \right) \right) \\
& =-\sin \left( \sin \left( x \right) \right)
\end{align}$
$f\left( -x \right)=-f\left( x \right)$
For option (c):
$f\left( x \right)=\sin \left( \tan \left( x \right) \right)$
$f\left( -x \right)=\sin \left( \tan \left( -x \right) \right)$………….…. (1)
Now, we know, $\tan x=\dfrac{\sin x}{\cos x}$
If we consider $f\left( -x \right)=\tan \left( -x \right)$
$\begin{align}
& \tan \left( -x \right)=\dfrac{\sin \left( -x \right)}{\cos \left( -x \right)} \\
& =\dfrac{-\sin x}{\cos x} \\
& =-\tan x
\end{align}$
Therefore, $f\left( -x \right)=-f\left( x \right)$
From (1), we get
$\begin{align}
& f\left( -x \right)=\sin \left( -\tan x \right) \\
& =-\sin \left( \tan x \right)
\end{align}$
Therefore, $f\left( -x \right)=-f\left( x \right)$
Therefore, option (c) is also an odd function.
For option (d):
$f\left( x \right)+f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)$ ……………….… (2)
we also have $f\left( 2 \right)=33$
Let us substitute $x=2$ we get
$\begin{align}
& f\left( 2 \right)+f\left( \dfrac{1}{2} \right)=f\left( 2 \right)\cdot f\left( \dfrac{1}{2} \right) \\
& \left( 33 \right)+f\left( \dfrac{1}{2} \right)=33\cdot f\left( \dfrac{1}{2} \right) \\
& 33=33f\left( \dfrac{1}{2} \right)-f\left( \dfrac{1}{2} \right) \\
& 33=f\left( \dfrac{1}{2} \right)\left[ 33-1 \right] \\
& 33=32f\left( \dfrac{1}{2} \right) \\
& f\left( \dfrac{1}{2} \right)=\dfrac{33}{32}
\end{align}$
Now, let us consider, $f\left( x \right)$ is an odd function
$\begin{align}
& f\left( -x \right)+f\left( \dfrac{1}{-x} \right)=f\left( -x \right)\cdot f\left( \dfrac{1}{-x} \right) \\
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=-f\left( x \right)\times -f\left( \dfrac{1}{x} \right) \\
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)
\end{align}$
From equation (2), we get
$\begin{align}
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right) \\
& f\left( x \right)+f\left( \dfrac{1}{x} \right)+f\left( x \right)+f\left( \dfrac{1}{x} \right)=0 \\
& 2\left[ f\left( x \right)+f\left( \dfrac{1}{x} \right) \right]=0 \\
& f\left( x \right)+f\left( \dfrac{1}{x} \right)=0 \\
& f\left( x \right)=-f\left( \dfrac{1}{x} \right)
\end{align}$
But we know, $f\left( 2 \right)\ne -f\left( \dfrac{1}{2} \right)$
Therefore, this option is not an odd function.
Hence, options (a) and (d) are the functions which are not odd functions.
Note: Odd function has a condition to satisfy, which is $f\left( -x \right)=-f\left( x \right)$. Similarly, to check whether a function is an even function, you simply need to follow $f\left( -x \right)=f\left( x \right)$, $\cos x$ which we used in the question is the most commonly known even function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

