
Which of the following is not an odd function?
This question has multiple correct options
(a) $\ln \left( \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}+x+1 \right)}^{2}}} \right)$
(b) $\sin \left( \sin \left( x \right) \right)$
(c) $\sin \left( \tan x \right)$
(d) $f\left( x \right)$, where $f\left( x \right)+f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)\forall x\in R-\left[ 0 \right]$ and $f\left( 2 \right)=33$
Answer
568.2k+ views
Hint: In this question, we need to check every option by using the principle formula of the odd function, $f\left( -x \right)=-f\left( x \right)$. If we check every option according to this condition, we will be able to figure out which option is an odd function or which options are not an odd function.
Complete step-by-step solution
We will be checking all the options to check whether they are an odd function or they are not an odd function.
To be an odd function, the particular function should satisfy the condition, $f\left( -x \right)=-f\left( x \right)$.
For option (a):
$f\left( x \right)=\ln \left( \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}+x+1 \right)}^{2}}} \right)$
$f\left( -x \right)=\ln \left[ \dfrac{{{\left( -x \right)}^{4}}+{{\left( -x \right)}^{2}}+1}{{{\left( {{\left( -x \right)}^{2}}+\left( -x \right)+1 \right)}^{2}}} \right]$
Now, we know that, if we have ${{\left( -x \right)}^{n}}$, the term $x$ is positive when $n$ is an even number and it is negative when $n$ is an odd number.
We get,
$\begin{align}
& f\left( -x \right)=\ln \left[ \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}-x+1 \right)}^{2}}} \right] \\
& f\left( -x \right)\ne -f\left( x \right)
\end{align}$
Therefore, the option (a) is not an odd function.
For option (b):
$f\left( x \right)=\sin \left( \sin \left( x \right) \right)$
We know, that $\sin \left( -x \right)=-\sin \left( x \right)$ means sine is an odd function, therefore,
$\begin{align}
& f\left( -x \right)=\sin \left( \sin \left( -x \right) \right) \\
& =\sin \left( -\sin \left( x \right) \right) \\
& =-\sin \left( \sin \left( x \right) \right)
\end{align}$
$f\left( -x \right)=-f\left( x \right)$
For option (c):
$f\left( x \right)=\sin \left( \tan \left( x \right) \right)$
$f\left( -x \right)=\sin \left( \tan \left( -x \right) \right)$………….…. (1)
Now, we know, $\tan x=\dfrac{\sin x}{\cos x}$
If we consider $f\left( -x \right)=\tan \left( -x \right)$
$\begin{align}
& \tan \left( -x \right)=\dfrac{\sin \left( -x \right)}{\cos \left( -x \right)} \\
& =\dfrac{-\sin x}{\cos x} \\
& =-\tan x
\end{align}$
Therefore, $f\left( -x \right)=-f\left( x \right)$
From (1), we get
$\begin{align}
& f\left( -x \right)=\sin \left( -\tan x \right) \\
& =-\sin \left( \tan x \right)
\end{align}$
Therefore, $f\left( -x \right)=-f\left( x \right)$
Therefore, option (c) is also an odd function.
For option (d):
$f\left( x \right)+f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)$ ……………….… (2)
we also have $f\left( 2 \right)=33$
Let us substitute $x=2$ we get
$\begin{align}
& f\left( 2 \right)+f\left( \dfrac{1}{2} \right)=f\left( 2 \right)\cdot f\left( \dfrac{1}{2} \right) \\
& \left( 33 \right)+f\left( \dfrac{1}{2} \right)=33\cdot f\left( \dfrac{1}{2} \right) \\
& 33=33f\left( \dfrac{1}{2} \right)-f\left( \dfrac{1}{2} \right) \\
& 33=f\left( \dfrac{1}{2} \right)\left[ 33-1 \right] \\
& 33=32f\left( \dfrac{1}{2} \right) \\
& f\left( \dfrac{1}{2} \right)=\dfrac{33}{32}
\end{align}$
Now, let us consider, $f\left( x \right)$ is an odd function
$\begin{align}
& f\left( -x \right)+f\left( \dfrac{1}{-x} \right)=f\left( -x \right)\cdot f\left( \dfrac{1}{-x} \right) \\
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=-f\left( x \right)\times -f\left( \dfrac{1}{x} \right) \\
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)
\end{align}$
From equation (2), we get
$\begin{align}
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right) \\
& f\left( x \right)+f\left( \dfrac{1}{x} \right)+f\left( x \right)+f\left( \dfrac{1}{x} \right)=0 \\
& 2\left[ f\left( x \right)+f\left( \dfrac{1}{x} \right) \right]=0 \\
& f\left( x \right)+f\left( \dfrac{1}{x} \right)=0 \\
& f\left( x \right)=-f\left( \dfrac{1}{x} \right)
\end{align}$
But we know, $f\left( 2 \right)\ne -f\left( \dfrac{1}{2} \right)$
Therefore, this option is not an odd function.
Hence, options (a) and (d) are the functions which are not odd functions.
Note: Odd function has a condition to satisfy, which is $f\left( -x \right)=-f\left( x \right)$. Similarly, to check whether a function is an even function, you simply need to follow $f\left( -x \right)=f\left( x \right)$, $\cos x$ which we used in the question is the most commonly known even function.
Complete step-by-step solution
We will be checking all the options to check whether they are an odd function or they are not an odd function.
To be an odd function, the particular function should satisfy the condition, $f\left( -x \right)=-f\left( x \right)$.
For option (a):
$f\left( x \right)=\ln \left( \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}+x+1 \right)}^{2}}} \right)$
$f\left( -x \right)=\ln \left[ \dfrac{{{\left( -x \right)}^{4}}+{{\left( -x \right)}^{2}}+1}{{{\left( {{\left( -x \right)}^{2}}+\left( -x \right)+1 \right)}^{2}}} \right]$
Now, we know that, if we have ${{\left( -x \right)}^{n}}$, the term $x$ is positive when $n$ is an even number and it is negative when $n$ is an odd number.
We get,
$\begin{align}
& f\left( -x \right)=\ln \left[ \dfrac{{{x}^{4}}+{{x}^{2}}+1}{{{\left( {{x}^{2}}-x+1 \right)}^{2}}} \right] \\
& f\left( -x \right)\ne -f\left( x \right)
\end{align}$
Therefore, the option (a) is not an odd function.
For option (b):
$f\left( x \right)=\sin \left( \sin \left( x \right) \right)$
We know, that $\sin \left( -x \right)=-\sin \left( x \right)$ means sine is an odd function, therefore,
$\begin{align}
& f\left( -x \right)=\sin \left( \sin \left( -x \right) \right) \\
& =\sin \left( -\sin \left( x \right) \right) \\
& =-\sin \left( \sin \left( x \right) \right)
\end{align}$
$f\left( -x \right)=-f\left( x \right)$
For option (c):
$f\left( x \right)=\sin \left( \tan \left( x \right) \right)$
$f\left( -x \right)=\sin \left( \tan \left( -x \right) \right)$………….…. (1)
Now, we know, $\tan x=\dfrac{\sin x}{\cos x}$
If we consider $f\left( -x \right)=\tan \left( -x \right)$
$\begin{align}
& \tan \left( -x \right)=\dfrac{\sin \left( -x \right)}{\cos \left( -x \right)} \\
& =\dfrac{-\sin x}{\cos x} \\
& =-\tan x
\end{align}$
Therefore, $f\left( -x \right)=-f\left( x \right)$
From (1), we get
$\begin{align}
& f\left( -x \right)=\sin \left( -\tan x \right) \\
& =-\sin \left( \tan x \right)
\end{align}$
Therefore, $f\left( -x \right)=-f\left( x \right)$
Therefore, option (c) is also an odd function.
For option (d):
$f\left( x \right)+f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)$ ……………….… (2)
we also have $f\left( 2 \right)=33$
Let us substitute $x=2$ we get
$\begin{align}
& f\left( 2 \right)+f\left( \dfrac{1}{2} \right)=f\left( 2 \right)\cdot f\left( \dfrac{1}{2} \right) \\
& \left( 33 \right)+f\left( \dfrac{1}{2} \right)=33\cdot f\left( \dfrac{1}{2} \right) \\
& 33=33f\left( \dfrac{1}{2} \right)-f\left( \dfrac{1}{2} \right) \\
& 33=f\left( \dfrac{1}{2} \right)\left[ 33-1 \right] \\
& 33=32f\left( \dfrac{1}{2} \right) \\
& f\left( \dfrac{1}{2} \right)=\dfrac{33}{32}
\end{align}$
Now, let us consider, $f\left( x \right)$ is an odd function
$\begin{align}
& f\left( -x \right)+f\left( \dfrac{1}{-x} \right)=f\left( -x \right)\cdot f\left( \dfrac{1}{-x} \right) \\
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=-f\left( x \right)\times -f\left( \dfrac{1}{x} \right) \\
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)\cdot f\left( \dfrac{1}{x} \right)
\end{align}$
From equation (2), we get
$\begin{align}
& -f\left( x \right)-f\left( \dfrac{1}{x} \right)=f\left( x \right)+f\left( \dfrac{1}{x} \right) \\
& f\left( x \right)+f\left( \dfrac{1}{x} \right)+f\left( x \right)+f\left( \dfrac{1}{x} \right)=0 \\
& 2\left[ f\left( x \right)+f\left( \dfrac{1}{x} \right) \right]=0 \\
& f\left( x \right)+f\left( \dfrac{1}{x} \right)=0 \\
& f\left( x \right)=-f\left( \dfrac{1}{x} \right)
\end{align}$
But we know, $f\left( 2 \right)\ne -f\left( \dfrac{1}{2} \right)$
Therefore, this option is not an odd function.
Hence, options (a) and (d) are the functions which are not odd functions.
Note: Odd function has a condition to satisfy, which is $f\left( -x \right)=-f\left( x \right)$. Similarly, to check whether a function is an even function, you simply need to follow $f\left( -x \right)=f\left( x \right)$, $\cos x$ which we used in the question is the most commonly known even function.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

