
Which of the following is a rational number(s)?
(A) $\dfrac{-2}{9}$
(B) $\dfrac{4}{-7}$
(C) \[\dfrac{-3}{17}\]
(D) All the three given numbers.
Answer
616.5k+ views
Hint: Use the definition of rational numbers given by “Any number having the form $\dfrac{p}{q}$ where ‘p’ and ‘q’ both are integers and \[q\ne 0\] is known as Rational Number” As a boundary conditions to decide whether the numbers are rational or not.
Complete step-by-step answer:
To identify that which number is a rational number, we should know the definition of rational number so that we can verify the conditions of rational numbers and conclude whether the number is rational or not, and for that we should know the definition of rational numbers given below,
Definition of Rational Numbers:
Any number having the form $\dfrac{p}{q}$ where ‘p’ and ‘q’ both are integers and \[q\ne 0\] is known as Rational Number.
Now, we will check each option as if it is a rational number or not,
Therefore consider Option (a),
If we compare $\dfrac{-2}{9}$ with $\dfrac{p}{q}$ then we can write,
p = -2 which is an integer, q = 9 which is also an integer and \[q\ne 0\],
As $\dfrac{-2}{9}$ satisfies all the conditions of a rational number therefore we can say that $\dfrac{-2}{9}$ is a rational number.
Therefore option (a) is correct. ……………………………………………………. (1)
Now, consider Option (b),
If we compare $\dfrac{4}{-7}$ with $\dfrac{p}{q}$ then we can write,
p = 4 which is an integer, q = -7 which is also an integer and \[q\ne 0\],
As $\dfrac{4}{-7}$ satisfies all the conditions of a rational number therefore we can say that $\dfrac{4}{-7}$ is a rational number.
Therefore option (b) is correct. ……………………………………………………. (2)
Therefore consider Option (c),
If we compare $\dfrac{-3}{17}$ with $\dfrac{p}{q}$ then we can write,
p = -3 which is an integer, q = 17 which is also an integer and \[q\ne 0\],
As $\dfrac{-3}{17}$ satisfies all the conditions of a rational number therefore we can say that v is a rational number.
Therefore option (c) is correct. ……………………………………………………. (1)
From equation (1), equation (2) and equation (3) we can say that all the three options have rational numbers and therefore we can say that all the given three numbers are rational numbers.
Therefore the correct answer is option (d).
Note: As per the definition of rational numbers they should have the form $\dfrac{p}{q}$ where \[q\ne 0\] that means ‘q’ can be 1 also and if q is equal to one the all the integers are also rational numbers including zero on the numerator. So if you find an integer in the option in this type of problem, don’t get confused and write it as a rational number.
Complete step-by-step answer:
To identify that which number is a rational number, we should know the definition of rational number so that we can verify the conditions of rational numbers and conclude whether the number is rational or not, and for that we should know the definition of rational numbers given below,
Definition of Rational Numbers:
Any number having the form $\dfrac{p}{q}$ where ‘p’ and ‘q’ both are integers and \[q\ne 0\] is known as Rational Number.
Now, we will check each option as if it is a rational number or not,
Therefore consider Option (a),
If we compare $\dfrac{-2}{9}$ with $\dfrac{p}{q}$ then we can write,
p = -2 which is an integer, q = 9 which is also an integer and \[q\ne 0\],
As $\dfrac{-2}{9}$ satisfies all the conditions of a rational number therefore we can say that $\dfrac{-2}{9}$ is a rational number.
Therefore option (a) is correct. ……………………………………………………. (1)
Now, consider Option (b),
If we compare $\dfrac{4}{-7}$ with $\dfrac{p}{q}$ then we can write,
p = 4 which is an integer, q = -7 which is also an integer and \[q\ne 0\],
As $\dfrac{4}{-7}$ satisfies all the conditions of a rational number therefore we can say that $\dfrac{4}{-7}$ is a rational number.
Therefore option (b) is correct. ……………………………………………………. (2)
Therefore consider Option (c),
If we compare $\dfrac{-3}{17}$ with $\dfrac{p}{q}$ then we can write,
p = -3 which is an integer, q = 17 which is also an integer and \[q\ne 0\],
As $\dfrac{-3}{17}$ satisfies all the conditions of a rational number therefore we can say that v is a rational number.
Therefore option (c) is correct. ……………………………………………………. (1)
From equation (1), equation (2) and equation (3) we can say that all the three options have rational numbers and therefore we can say that all the given three numbers are rational numbers.
Therefore the correct answer is option (d).
Note: As per the definition of rational numbers they should have the form $\dfrac{p}{q}$ where \[q\ne 0\] that means ‘q’ can be 1 also and if q is equal to one the all the integers are also rational numbers including zero on the numerator. So if you find an integer in the option in this type of problem, don’t get confused and write it as a rational number.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Find the mode and median of the data 13 16 12 14 1-class-9-maths-CBSE

What were the main changes brought about by the Bolsheviks class 9 social science CBSE

What is the theme or message of the poem The road not class 9 english CBSE

What are the major achievements of the UNO class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE


