
Which of the following has no domain?
\[\left( \text{a} \right)f\left( x \right)={{\log }_{x-1}}\left( 2-\left[ x \right]-{{\left[ x \right]}^{2}} \right)\] where [x] denotes GIF
\[\left( \text{b} \right)g\left( x \right)={{\cos }^{-1}}\left( 2-\left\{ x \right\} \right)\] where {x} denotes fractional part function.
\[\left( \text{c} \right)h\left( x \right)=\ln \ln \left( \cos x \right)\]
\[\left( \text{d} \right)f\left( x \right)=\dfrac{1}{{{\sec }^{-1}}\left( \text{sgn} \left( {{e}^{-x}} \right) \right)}\]
Answer
585.9k+ views
Hint: To solve the given question, we will check each option one by one. While checking the options, we will use the fact that the domain of log x is \[x\in \left( 0,\infty \right),\] the domain of \[{{\cos }^{-1}}\left\{ x \right\}\] is \[x\in \left[ -1,1 \right].\] The domain of \[{{\log }_{a}}7\] is \[a\in \left( 0,1 \right)\cup \left( 1,\infty \right),\] the domain of \[{{\sec }^{-1}}x\] is \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty \right).\] We will use the domains of these functions to get the answer.
Complete step by step answer:
To solve the above question, we will check each and every option. So, we have,
Option (a): \[f\left( x \right)={{\log }_{x-1}}\left( 2-\left[ x \right]-{{\left[ x \right]}^{2}} \right)\]
The function given in the question is a logarithmic function. Now, the base of the logarithm should be positive and it should not be equal to 1. The base of the above logarithmic function is x – 1. So, we have,
\[x-1\ne 1\]
\[\Rightarrow x\ne 2.....\left( i \right)\]
Also, x – 1 > 0
\[\Rightarrow x>1....\left( ii \right)\]
Now, the argument part of the logarithmic function should be positive. Thus,
\[2-\left[ x \right]-{{\left[ x \right]}^{2}}>0\]
\[\Rightarrow {{\left[ x \right]}^{2}}+\left[ x \right]-2<0\]
\[\Rightarrow {{\left[ x \right]}^{2}}+2\left[ x \right]-\left[ x \right]-2<0\]
\[\Rightarrow \left[ x \right]\left( \left[ x \right]+2 \right)-1\left( \left[ x \right]+2 \right)<0\]
\[\Rightarrow \left( \left[ x \right]-1 \right)\left( \left[ x \right]+2 \right)<0\]
\[\Rightarrow \left[ x \right]\in \left( -2,1 \right)\]
Now, [x] > – 2. So,
\[x\ge -1......\left( iii \right)\]
Similarly, [x] < 1. So,
\[x<2.....\left( iv \right)\]
Now, to find the domain of the entire function, we will find the common values of x from (i), (ii), (iii) and (iv). Thus, the domain of the given function is,
\[x\in \left( 1,2 \right)\]
Option (b): \[g\left( x \right)={{\cos }^{-1}}\left( 2-\left\{ x \right\} \right)\]
Now, we know that the domain of the cos inverse function lies in the range \[x\in \left[ -1,1 \right].\] So, we can say that,
\[2-\left\{ x \right\}\in \left[ -1,1 \right]\]
\[-1\le 2-\left\{ x \right\}\le 1\]
\[\Rightarrow -3\le -\left\{ x \right\}\le -1\]
\[\Rightarrow 1\le \left\{ x \right\}\le 3.....\left( i \right)\]
Now, the range of {x} is:
\[0\le \left\{ x \right\}<1......\left( ii \right)\]
From (i) and (ii), we will take the common values of {x}. We can see there is nothing common so there will be no domain.
Option (c): \[h\left( x \right)=\ln \ln \left( \cos x \right)\]
Now, we know that the domain of ln x is \[x\in \left( 0,\infty \right).\] We will assume the value of ln cos x = t. Thus, we get, h(t) = ln t. Now, we have,
\[t\in \left( 0,\infty \right)\]
\[\Rightarrow 0\[\Rightarrow 0<\ln \cos x<\infty \]
Now, the maximum value of cos x = 1. So, the maximum value of ln cos x = ln 1 = 0. But in the above inequality, \[\ln \cos x\in \left( 0,\infty \right).\] We can see that there is nothing common here, so this function will not have any domain.
Option (d): \[f\left( x \right)=\dfrac{1}{{{\sec }^{-1}}\left( sgn \left( {{e}^{-x}} \right) \right)}\]
Now, the signum function will give the value 1 when the function inside it is positive, it will give – 1 when the function inside it is negative and it will give 0 if the function value is zero. Now, \[{{e}^{-x}}\] is positive for any value of x, so \[sgn \left( {{e}^{-x}} \right)=1.\] Thus,
\[f\left( x \right)=\dfrac{1}{{{\sec }^{-1}}\left( 1 \right)}\]
Now,
\[{{\sec }^{-1}}1=0\]
So,
\[f\left( x \right)=\dfrac{1}{0}\]
But f(x) can’t be any infinite function so, in this function, there is no domain.
Hence, option (b), (c) and (d) are correct.
Note: We can also solve the option (b) as shown below. We know that the domain of the fractional part function {x} is \[x\in \left( 0,\infty \right)\] and the range is: \[\left\{ x \right\}\in \left[ 0,1 \right).\]
So, the minimum value of (2 – {x}) is
\[=\left( 2-{{1}^{-}} \right)\]
\[=\left( {{1}^{+}} \right)\]
But the maximum value of the domain of \[{{\cos }^{-1}}\left( x \right)\] is 1. And we have 2 – {x} > 1. So, there is no domain.
Complete step by step answer:
To solve the above question, we will check each and every option. So, we have,
Option (a): \[f\left( x \right)={{\log }_{x-1}}\left( 2-\left[ x \right]-{{\left[ x \right]}^{2}} \right)\]
The function given in the question is a logarithmic function. Now, the base of the logarithm should be positive and it should not be equal to 1. The base of the above logarithmic function is x – 1. So, we have,
\[x-1\ne 1\]
\[\Rightarrow x\ne 2.....\left( i \right)\]
Also, x – 1 > 0
\[\Rightarrow x>1....\left( ii \right)\]
Now, the argument part of the logarithmic function should be positive. Thus,
\[2-\left[ x \right]-{{\left[ x \right]}^{2}}>0\]
\[\Rightarrow {{\left[ x \right]}^{2}}+\left[ x \right]-2<0\]
\[\Rightarrow {{\left[ x \right]}^{2}}+2\left[ x \right]-\left[ x \right]-2<0\]
\[\Rightarrow \left[ x \right]\left( \left[ x \right]+2 \right)-1\left( \left[ x \right]+2 \right)<0\]
\[\Rightarrow \left( \left[ x \right]-1 \right)\left( \left[ x \right]+2 \right)<0\]
\[\Rightarrow \left[ x \right]\in \left( -2,1 \right)\]
Now, [x] > – 2. So,
\[x\ge -1......\left( iii \right)\]
Similarly, [x] < 1. So,
\[x<2.....\left( iv \right)\]
Now, to find the domain of the entire function, we will find the common values of x from (i), (ii), (iii) and (iv). Thus, the domain of the given function is,
\[x\in \left( 1,2 \right)\]
Option (b): \[g\left( x \right)={{\cos }^{-1}}\left( 2-\left\{ x \right\} \right)\]
Now, we know that the domain of the cos inverse function lies in the range \[x\in \left[ -1,1 \right].\] So, we can say that,
\[2-\left\{ x \right\}\in \left[ -1,1 \right]\]
\[-1\le 2-\left\{ x \right\}\le 1\]
\[\Rightarrow -3\le -\left\{ x \right\}\le -1\]
\[\Rightarrow 1\le \left\{ x \right\}\le 3.....\left( i \right)\]
Now, the range of {x} is:
\[0\le \left\{ x \right\}<1......\left( ii \right)\]
From (i) and (ii), we will take the common values of {x}. We can see there is nothing common so there will be no domain.
Option (c): \[h\left( x \right)=\ln \ln \left( \cos x \right)\]
Now, we know that the domain of ln x is \[x\in \left( 0,\infty \right).\] We will assume the value of ln cos x = t. Thus, we get, h(t) = ln t. Now, we have,
\[t\in \left( 0,\infty \right)\]
\[\Rightarrow 0
Now, the maximum value of cos x = 1. So, the maximum value of ln cos x = ln 1 = 0. But in the above inequality, \[\ln \cos x\in \left( 0,\infty \right).\] We can see that there is nothing common here, so this function will not have any domain.
Option (d): \[f\left( x \right)=\dfrac{1}{{{\sec }^{-1}}\left( sgn \left( {{e}^{-x}} \right) \right)}\]
Now, the signum function will give the value 1 when the function inside it is positive, it will give – 1 when the function inside it is negative and it will give 0 if the function value is zero. Now, \[{{e}^{-x}}\] is positive for any value of x, so \[sgn \left( {{e}^{-x}} \right)=1.\] Thus,
\[f\left( x \right)=\dfrac{1}{{{\sec }^{-1}}\left( 1 \right)}\]
Now,
\[{{\sec }^{-1}}1=0\]
So,
\[f\left( x \right)=\dfrac{1}{0}\]
But f(x) can’t be any infinite function so, in this function, there is no domain.
Hence, option (b), (c) and (d) are correct.
Note: We can also solve the option (b) as shown below. We know that the domain of the fractional part function {x} is \[x\in \left( 0,\infty \right)\] and the range is: \[\left\{ x \right\}\in \left[ 0,1 \right).\]
So, the minimum value of (2 – {x}) is
\[=\left( 2-{{1}^{-}} \right)\]
\[=\left( {{1}^{+}} \right)\]
But the maximum value of the domain of \[{{\cos }^{-1}}\left( x \right)\] is 1. And we have 2 – {x} > 1. So, there is no domain.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

