Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

What is the integral of a constant?

Answer
VerifiedVerified
441.3k+ views
1 likes
like imagedislike image
Hint: In this type of question we have to use the concepts of integration and some rules of indices. We know that anything raised to zero is always equal to 1 that is x0=1. Also we know that xndx=xn+1n+1+c where c is an arbitrary constant which is also known as constant of integration

Complete step-by-step answer:
Now we have to find the integral of a constant say k.
For this let us consider,
=kdx
Now as k is a constant we can rewrite the integral as
=k1dx
By the rule of indices we can write x0=1 and hence
=kx0dx
By using the rule, xndx=xn+1n+1+c we get,
=k(x0+10+1)+c where c is an arbitrary constant which is also known as constant of integration
=k(x11)+c
On simplifying we can write,
=kx+c
Hence, we can say that the integral of a constant say k is given by, kx+c
In other words, we can write, kdx=kx+c

Note: In this type of question one of the students may use another way to find the integral of a constant in following manner:
We know that by the rules of differentiation ddx(kx+c)=kddx(x)+ddx(c)=k where k and c are constant and we know that the derivative of a constant is zero.
=ddx(kx+c)=k
Now taking integral of both sides we get,
=[ddx(kx+c)]dx=kdx
As we know that integration and differentiation are inverse of each other,
=kx+c=kdx
Hence, we can say that the integral of a constant say k that is kdx equals to kx+c where c is an arbitrary constant which is also known as constant of integration.

Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹41,848 per year
Select and buy