
What is the derivative of $\sqrt{{{x}^{2}}+1}$?
Answer
530.1k+ views
Hint: Assume the function ${{x}^{2}}+1$ as $f\left( x \right)$ and write \[\sqrt{{{x}^{2}}+1}\] as $\sqrt{f\left( x \right)}$. Now, use the chain rule of differentiation to differentiate the function. First differentiate the function $\sqrt{f\left( x \right)}$ with respect to the function $f\left( x \right)$ and then differentiate the function $f\left( x \right)$ with respect to x. Finally we will take the product of these two derivatives to get the answer. The formula is given as $\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{dx}=\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}\times \dfrac{d\left[ f\left( x \right) \right]}{dx}$ . Use the formula \[\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}=\dfrac{1}{2\sqrt{f\left( x \right)}}\] to simplify the first part.
Complete step-by-step solution:
Here we have been provided with the function $\sqrt{{{x}^{2}}+1}$ and we are asked to find its derivative. Here we will use the chain rule of derivative to get the answer. Assuming the function ${{x}^{2}}+1$ as $f\left( x \right)$ we have the function \[\sqrt{{{x}^{2}}+1}\] of the form $\sqrt{f\left( x \right)}$. So we have,
\[\Rightarrow \sqrt{{{x}^{2}}+1}=\sqrt{f\left( x \right)}\]
On differentiating both the sides with respect to x we get,
\[\Rightarrow \dfrac{d\left( \sqrt{{{x}^{2}}+1} \right)}{dx}=\dfrac{d\left( \sqrt{f\left( x \right)} \right)}{dx}\]
Now, according to the chain rule of derivative first we have to differentiate the function $\sqrt{f\left( x \right)}$ with respect to $f\left( x \right)$ and then we have to differentiate $f\left( x \right)$ with respect to x. Finally, we need to consider their product to get the relation. So we get,
$\Rightarrow \dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{dx}=\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}\times \dfrac{d\left[ f\left( x \right) \right]}{dx}$
The derivative of $\sqrt{f\left( x \right)}$ with respect to $f\left( x \right)$ is given by the formula \[\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}=\dfrac{1}{2\sqrt{f\left( x \right)}}\], so we get,
$\Rightarrow \dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{dx}=\dfrac{1}{2\sqrt{f\left( x \right)}}\times \dfrac{d\left[ f\left( x \right) \right]}{dx}$
Substituting the value of $f\left( x \right)$ we get,
$\begin{align}
& \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \dfrac{d\left[ {{x}^{2}}+1 \right]}{dx} \\
& \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( \dfrac{d\left[ {{x}^{2}} \right]}{dx}+\dfrac{d\left[ 1 \right]}{dx} \right) \\
\end{align}$
Using the formula $\dfrac{d\left[ {{x}^{n}} \right]}{dx}=n{{x}^{n-1}}$ and the fact that the derivative of a constant is 0 we get,
$\begin{align}
& \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( 2{{x}^{2-1}}+0 \right) \\
& \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( 2x \right) \\
& \therefore \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{x}{\sqrt{{{x}^{2}}+1}} \\
\end{align}$
Hence, the above relation is our answer.
Note: You must remember all the basic rules and formulas of differentiation like: - product rule, chain rule, \[\dfrac{u}{v}\] rule etc. You can also convert the given function into parametric form then differentiate. Assume the function as y and substitute $x=\tan \theta $ and then you will get the function $y=\sec \theta $. Now, find the derivative by using the formula \[\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{d\theta } \right)}{\left( \dfrac{dx}{d\theta } \right)}\]. Use the formulas $\dfrac{d\left( \sec \theta \right)}{dx}=\sec \theta \tan \theta $ and $\dfrac{d\left( \tan \theta \right)}{dx}={{\sec }^{2}}\theta $ to simplify and get the answer. Finally substitute the value of these trigonometric functions in terms of x to get the answer.
Complete step-by-step solution:
Here we have been provided with the function $\sqrt{{{x}^{2}}+1}$ and we are asked to find its derivative. Here we will use the chain rule of derivative to get the answer. Assuming the function ${{x}^{2}}+1$ as $f\left( x \right)$ we have the function \[\sqrt{{{x}^{2}}+1}\] of the form $\sqrt{f\left( x \right)}$. So we have,
\[\Rightarrow \sqrt{{{x}^{2}}+1}=\sqrt{f\left( x \right)}\]
On differentiating both the sides with respect to x we get,
\[\Rightarrow \dfrac{d\left( \sqrt{{{x}^{2}}+1} \right)}{dx}=\dfrac{d\left( \sqrt{f\left( x \right)} \right)}{dx}\]
Now, according to the chain rule of derivative first we have to differentiate the function $\sqrt{f\left( x \right)}$ with respect to $f\left( x \right)$ and then we have to differentiate $f\left( x \right)$ with respect to x. Finally, we need to consider their product to get the relation. So we get,
$\Rightarrow \dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{dx}=\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}\times \dfrac{d\left[ f\left( x \right) \right]}{dx}$
The derivative of $\sqrt{f\left( x \right)}$ with respect to $f\left( x \right)$ is given by the formula \[\dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{d\left[ f\left( x \right) \right]}=\dfrac{1}{2\sqrt{f\left( x \right)}}\], so we get,
$\Rightarrow \dfrac{d\left[ \sqrt{f\left( x \right)} \right]}{dx}=\dfrac{1}{2\sqrt{f\left( x \right)}}\times \dfrac{d\left[ f\left( x \right) \right]}{dx}$
Substituting the value of $f\left( x \right)$ we get,
$\begin{align}
& \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \dfrac{d\left[ {{x}^{2}}+1 \right]}{dx} \\
& \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( \dfrac{d\left[ {{x}^{2}} \right]}{dx}+\dfrac{d\left[ 1 \right]}{dx} \right) \\
\end{align}$
Using the formula $\dfrac{d\left[ {{x}^{n}} \right]}{dx}=n{{x}^{n-1}}$ and the fact that the derivative of a constant is 0 we get,
$\begin{align}
& \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( 2{{x}^{2-1}}+0 \right) \\
& \Rightarrow \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}+1}}\times \left( 2x \right) \\
& \therefore \dfrac{d\left[ \sqrt{{{x}^{2}}+1} \right]}{dx}=\dfrac{x}{\sqrt{{{x}^{2}}+1}} \\
\end{align}$
Hence, the above relation is our answer.
Note: You must remember all the basic rules and formulas of differentiation like: - product rule, chain rule, \[\dfrac{u}{v}\] rule etc. You can also convert the given function into parametric form then differentiate. Assume the function as y and substitute $x=\tan \theta $ and then you will get the function $y=\sec \theta $. Now, find the derivative by using the formula \[\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{d\theta } \right)}{\left( \dfrac{dx}{d\theta } \right)}\]. Use the formulas $\dfrac{d\left( \sec \theta \right)}{dx}=\sec \theta \tan \theta $ and $\dfrac{d\left( \tan \theta \right)}{dx}={{\sec }^{2}}\theta $ to simplify and get the answer. Finally substitute the value of these trigonometric functions in terms of x to get the answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

