
What is the derivative of \[{e^{2{x^2}}}\]?
Answer
510.3k+ views
Hint: Here, the given question has a trigonometric function. We have to find the derivative or differentiated term of the function. First consider the function \[y\], then differentiate \[y\] with respect to \[x\] by using a standard differentiation formula of trigonometric ratio and use chain rule for differentiation. And on further simplification we get the required differentiate value.
Complete step-by-step answer:
The differentiation of a function is defined as the derivative or rate of change of a function. The function is said to be differentiable if the limit exists.
Consider the given function
\[y = {e^{2{x^2}}} - - - - \left( 1 \right)\]
We know the chain rule, that is \[y = {e^{g(x)}}\] then the derivative is given by
\[{y^1} = {e^{g(x)}}g'\left( x \right)\].
Here \[g\left( x \right) = 2{x^2}\].
now differentiating (1) with respect to x
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{2{x^2}}}} \right)\]
\[\dfrac{{dy}}{{dx}} = {e^{2{x^2}}}\dfrac{d}{{dx}}\left( {2{x^2}} \right)\].
We know the differentiation of \[{x^n}\] is \[\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}}\].
\[\dfrac{{dy}}{{dx}} = {e^{2{x^2}}}\left( {2.2{x^{2 - 1}}} \right)\]
\[\dfrac{{dy}}{{dx}} = {e^{2{x^2}}}\left( {4x} \right)\]
\[\dfrac{{dy}}{{dx}} = 4x{e^{2{x^2}}}\]
Thus the derivative of \[{e^{2{x^2}}}\] with respect to x is \[4x{e^{2{x^2}}}\].
So, the correct answer is “ \[4x{e^{2{x^2}}}\]”.
Note: We know the differentiation of \[{x^n}\] is \[\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}}\]. The obtained result is the first derivative. If we differentiate again we get a second derivative. If we differentiate the second derivative again we get a third derivative and so on. Careful in applying the product rule. We also know that differentiation of constant terms is zero
Complete step-by-step answer:
The differentiation of a function is defined as the derivative or rate of change of a function. The function is said to be differentiable if the limit exists.
Consider the given function
\[y = {e^{2{x^2}}} - - - - \left( 1 \right)\]
We know the chain rule, that is \[y = {e^{g(x)}}\] then the derivative is given by
\[{y^1} = {e^{g(x)}}g'\left( x \right)\].
Here \[g\left( x \right) = 2{x^2}\].
now differentiating (1) with respect to x
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{2{x^2}}}} \right)\]
\[\dfrac{{dy}}{{dx}} = {e^{2{x^2}}}\dfrac{d}{{dx}}\left( {2{x^2}} \right)\].
We know the differentiation of \[{x^n}\] is \[\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}}\].
\[\dfrac{{dy}}{{dx}} = {e^{2{x^2}}}\left( {2.2{x^{2 - 1}}} \right)\]
\[\dfrac{{dy}}{{dx}} = {e^{2{x^2}}}\left( {4x} \right)\]
\[\dfrac{{dy}}{{dx}} = 4x{e^{2{x^2}}}\]
Thus the derivative of \[{e^{2{x^2}}}\] with respect to x is \[4x{e^{2{x^2}}}\].
So, the correct answer is “ \[4x{e^{2{x^2}}}\]”.
Note: We know the differentiation of \[{x^n}\] is \[\dfrac{{d({x^n})}}{{dx}} = n.{x^{n - 1}}\]. The obtained result is the first derivative. If we differentiate again we get a second derivative. If we differentiate the second derivative again we get a third derivative and so on. Careful in applying the product rule. We also know that differentiation of constant terms is zero
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

