
What is Stefan Boltzmann law ?
Answer
513k+ views
Hint: Learn about black body radiation thoroughly and learn the law related to black body radiation. Stefan rose in 1879 formulated a law about the radiant energy of black body, five years later he proved his theory empirically. The same was derived theoretically by Ludwig Boltzmann of Austria and hence became Stefan- Boltzmann law.
Complete answer:
A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. Stefan- Boltzmann deduced the energy radiating through the surface of a black body. Stefan- Boltzmann law states that the radiated energy through the unit surface of a black body per unit time is proportional to the fourth power of the absolute temperature of it. It can be expressed as,
\[E \propto {T^4}\]
where, \[E\] is the radiation energy by the unit surface of the black body per unit time and \[T\] is the absolute temperature of the black body.
By introducing a constant of proportionality we can write the equation as,
\[E = \sigma {T^4}\]
where, \[\sigma \] is the Stefan –Boltzmann constant the value of it is \[\sigma = 5.67 \times {10^{ - 8}}J{s^{ - 1}}{m^{ - 2}}{K^{ - 4}}\].
Note: When a normal body called a grey body, which does not absorbs all the electromagnetic radiation coming to it the Stefan – Boltzmann law becomes \[E = \varepsilon \sigma {T^4}\]. Emissivity is the ratio of the energy radiated through per unit time per unit area to that of the energy radiated by a black body per unit time per unit area. Hence, for a perfect blackbody emissivity is always one. \[\varepsilon = 1\].
Complete answer:
A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. Stefan- Boltzmann deduced the energy radiating through the surface of a black body. Stefan- Boltzmann law states that the radiated energy through the unit surface of a black body per unit time is proportional to the fourth power of the absolute temperature of it. It can be expressed as,
\[E \propto {T^4}\]
where, \[E\] is the radiation energy by the unit surface of the black body per unit time and \[T\] is the absolute temperature of the black body.
By introducing a constant of proportionality we can write the equation as,
\[E = \sigma {T^4}\]
where, \[\sigma \] is the Stefan –Boltzmann constant the value of it is \[\sigma = 5.67 \times {10^{ - 8}}J{s^{ - 1}}{m^{ - 2}}{K^{ - 4}}\].
Note: When a normal body called a grey body, which does not absorbs all the electromagnetic radiation coming to it the Stefan – Boltzmann law becomes \[E = \varepsilon \sigma {T^4}\]. Emissivity is the ratio of the energy radiated through per unit time per unit area to that of the energy radiated by a black body per unit time per unit area. Hence, for a perfect blackbody emissivity is always one. \[\varepsilon = 1\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

