
What is Cramer’s rule?
Answer
526.2k+ views
Hint: This question is from the topic of matrix and determinant. Cramer’s rule is a handy way to solve for just one of the variables without having to solve the whole system of equations. In this question, we will first understand the definition of Cramer’s rule. After that, we will see some application of Cramer’s rule.
Complete step-by-step solution:
Let us solve this question.
Cramer’s rule is an explicit formula for the solution of a system of linear equations with as many equations as is unknown, valid whenever the system has a unique solution.
Or in a simple way, we can say that if the numbers of equations are n and those equations are having n variables, then we can use Cramer’s rule to find the value of variables.
Now, let us understand this rule from the following:
Consider the linear system:
\[{{a}_{1}}x+{{b}_{1}}y={{c}_{1}}\]
\[{{a}_{2}}x+{{b}_{2}}y={{c}_{2}}\]
We can write the above in matrix form as
\[\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
{{c}_{1}} \\
{{c}_{2}} \\
\end{matrix} \right]\]
Here, we can see that there are two equations. In those two equations, there are two variables that is, x and y and the rest are constants.
So, we can say that the matrix having constant is of the order \[2\times 2\].
Remember that \[D=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right|={{a}_{1}}{{b}_{2}}-{{b}_{1}}{{a}_{2}}\] should not be zero.
Hence, according to Cramer’s rule, the value of x and y can be written as
\[x=\dfrac{\left| \begin{matrix}
{{c}_{1}} & {{b}_{1}} \\
{{c}_{2}} & {{b}_{2}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right|}=\dfrac{{{c}_{1}}{{b}_{2}}-{{b}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{b}_{1}}{{a}_{2}}}\],
\[y=\dfrac{\left| \begin{matrix}
{{a}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{c}_{2}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right|}=\dfrac{{{a}_{1}}{{c}_{2}}-{{c}_{1}}{{a}_{2}}}{{{a}_{1}}{{b}_{2}}-{{b}_{1}}{{a}_{2}}}\]
Now, similarly if there are three equations and three variables. We can write the equations as
\[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z={{d}_{1}}\]
\[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z={{d}_{2}}\]
\[{{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z={{d}_{3}}\]
The matrix form can be written using above equations as
\[\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
{{d}_{1}} \\
{{d}_{2}} \\
{{d}_{3}} \\
\end{matrix} \right]\]
The matrix containing only constants i.e., \[\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right]\] is of the order of \[3\times 3\].
Remember that \[D=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\] should not be zero.
Hence, using the Cramer’s rule, the value of x, y and z will be
\[x=\dfrac{\left| \begin{matrix}
{{d}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{d}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{d}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}=\dfrac{{{d}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{d}_{2}}{{c}_{3}}-{{c}_{2}}{{d}_{3}} \right)+{{c}_{1}}\left( {{d}_{2}}{{b}_{3}}-{{b}_{2}}{{d}_{3}} \right)}{{{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{2}}{{c}_{3}}-{{c}_{2}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)}\]
\[y=\dfrac{\left| \begin{matrix}
{{a}_{1}} & {{d}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{d}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{d}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}=\dfrac{{{a}_{1}}\left( {{d}_{2}}{{c}_{3}}-{{c}_{2}}{{d}_{3}} \right)-{{d}_{1}}\left( {{a}_{2}}{{c}_{3}}-{{c}_{2}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{d}_{3}}-{{d}_{2}}{{a}_{3}} \right)}{{{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{2}}{{c}_{3}}-{{c}_{2}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)}\]
\[z=\dfrac{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{d}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{d}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{d}_{3}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}=\dfrac{{{a}_{1}}\left( {{b}_{2}}{{d}_{3}}-{{d}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{2}}{{d}_{3}}-{{d}_{2}}{{a}_{3}} \right)+{{d}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)}{{{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{2}}{{c}_{3}}-{{c}_{2}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)}\]
Now, we have seen how we can use Cramer’s rule. This can be used for finding any variables from the equations. Just remember that the number of variables should be equal to the number of equations.
Note: We should have a better knowledge in the topic of matrices and determinants. Remember that the value of D that is the determinant of the constant matrix should not be zero. If it is zero, then we can say that the value of variables cannot be unique. The solution can be infinite or zero. And, we should not use Cramer’s rule, if the value of D is zero.
Complete step-by-step solution:
Let us solve this question.
Cramer’s rule is an explicit formula for the solution of a system of linear equations with as many equations as is unknown, valid whenever the system has a unique solution.
Or in a simple way, we can say that if the numbers of equations are n and those equations are having n variables, then we can use Cramer’s rule to find the value of variables.
Now, let us understand this rule from the following:
Consider the linear system:
\[{{a}_{1}}x+{{b}_{1}}y={{c}_{1}}\]
\[{{a}_{2}}x+{{b}_{2}}y={{c}_{2}}\]
We can write the above in matrix form as
\[\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{matrix}
{{c}_{1}} \\
{{c}_{2}} \\
\end{matrix} \right]\]
Here, we can see that there are two equations. In those two equations, there are two variables that is, x and y and the rest are constants.
So, we can say that the matrix having constant is of the order \[2\times 2\].
Remember that \[D=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right|={{a}_{1}}{{b}_{2}}-{{b}_{1}}{{a}_{2}}\] should not be zero.
Hence, according to Cramer’s rule, the value of x and y can be written as
\[x=\dfrac{\left| \begin{matrix}
{{c}_{1}} & {{b}_{1}} \\
{{c}_{2}} & {{b}_{2}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right|}=\dfrac{{{c}_{1}}{{b}_{2}}-{{b}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{b}_{1}}{{a}_{2}}}\],
\[y=\dfrac{\left| \begin{matrix}
{{a}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{c}_{2}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} \\
{{a}_{2}} & {{b}_{2}} \\
\end{matrix} \right|}=\dfrac{{{a}_{1}}{{c}_{2}}-{{c}_{1}}{{a}_{2}}}{{{a}_{1}}{{b}_{2}}-{{b}_{1}}{{a}_{2}}}\]
Now, similarly if there are three equations and three variables. We can write the equations as
\[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z={{d}_{1}}\]
\[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z={{d}_{2}}\]
\[{{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z={{d}_{3}}\]
The matrix form can be written using above equations as
\[\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
{{d}_{1}} \\
{{d}_{2}} \\
{{d}_{3}} \\
\end{matrix} \right]\]
The matrix containing only constants i.e., \[\left[ \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right]\] is of the order of \[3\times 3\].
Remember that \[D=\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\] should not be zero.
Hence, using the Cramer’s rule, the value of x, y and z will be
\[x=\dfrac{\left| \begin{matrix}
{{d}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{d}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{d}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}=\dfrac{{{d}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{d}_{2}}{{c}_{3}}-{{c}_{2}}{{d}_{3}} \right)+{{c}_{1}}\left( {{d}_{2}}{{b}_{3}}-{{b}_{2}}{{d}_{3}} \right)}{{{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{2}}{{c}_{3}}-{{c}_{2}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)}\]
\[y=\dfrac{\left| \begin{matrix}
{{a}_{1}} & {{d}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{d}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{d}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}=\dfrac{{{a}_{1}}\left( {{d}_{2}}{{c}_{3}}-{{c}_{2}}{{d}_{3}} \right)-{{d}_{1}}\left( {{a}_{2}}{{c}_{3}}-{{c}_{2}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{d}_{3}}-{{d}_{2}}{{a}_{3}} \right)}{{{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{2}}{{c}_{3}}-{{c}_{2}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)}\]
\[z=\dfrac{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{d}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{d}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{d}_{3}} \\
\end{matrix} \right|}{\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|}=\dfrac{{{a}_{1}}\left( {{b}_{2}}{{d}_{3}}-{{d}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{2}}{{d}_{3}}-{{d}_{2}}{{a}_{3}} \right)+{{d}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)}{{{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{2}}{{c}_{3}}-{{c}_{2}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)}\]
Now, we have seen how we can use Cramer’s rule. This can be used for finding any variables from the equations. Just remember that the number of variables should be equal to the number of equations.
Note: We should have a better knowledge in the topic of matrices and determinants. Remember that the value of D that is the determinant of the constant matrix should not be zero. If it is zero, then we can say that the value of variables cannot be unique. The solution can be infinite or zero. And, we should not use Cramer’s rule, if the value of D is zero.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

