
We use the derivative according to the given problem .The derivative of function $f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}}$ is
1. \[Even{\text{ }}function\]
2. \[Odd{\text{ }}function\]
3. \[Not{\text{ }}define\]
4. \[Increasing{\text{ }}Function\]
Answer
507.6k+ views
Hint: We have to derivative the function $f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}}$ and state the type of function formed after differentiating the function \[f\left( x \right)\] . We solve this by firstly differentiating the function \[f\left( x \right)\] with respect to using chain rule and various basic derivative formulas of trigonometric functions and derivatives of ${x^n}$ . Then in the function \[f'\left( x \right)\] we replace \[\;x\] by \[\left( { - x} \right)\] and then state the type of the function .
Complete step-by-step solution:
Given : $f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}}$
Let \[f\left( x \right){\text{ }} = {\text{ }}y\]
So ,
$y = f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}}$
We know that , $si{n^2}x + co{s^2}x = 1$
Using this formula , we get
$co{s^2}x = 1 - si{n^2}x$
Putting this in \[y\] , we get
$y = \dfrac{{{x^2}}}{{co{s^2}x}}$
Also we know that \[cos{\text{ }}x{\text{ }} = \dfrac{1}{{{\text{ }}sec{\text{ }}x}}\]
Hence , the function becomes
$y = {x^2} \times se{c^2}x$
Now we have to derivative of \[y\] with respect to
Using product rule of differentiation , ( derivative of ${x^n} = n \times {x^{(n - 1)}}$ ) and ( derivative of \[sec{\text{ }}x{\text{ }} = {\text{ }}sec{\text{ }}x{\text{ }} \times {\text{ }}tan{\text{ }}x\] ) , we get
$\dfrac{{dy}}{{dx}} = 2xse{c^2}x + 2\sec x \times \tan x \times {x^2}$
Taking elements common , we get
\[\dfrac{{dy}}{{dx}} = {\text{ }}2x{\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]\]
The derivative of function \[f\left( x \right){\text{ }} = {\text{ }}f'\left( x \right){\text{ }} = \dfrac{{dy}}{{dx}}\]
So ,
\[f'\left( x \right){\text{ }} = {\text{ }}2x{\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]\]
Now , we will replace \[\;x\] by \[ - x\] in \[f'\left( x \right)\] to check whether the function is an even or an odd function
Replacing \[x\] by \[ - x\] , we get
\[f'\left( { - x} \right){\text{ }} = {\text{ }}2{\text{ }} \times {\text{ }}\left( { - x{\text{ }}} \right){\text{ }}sec{\text{ }}\left( { - x} \right){\text{ }} \times {\text{ }}\left[ {{\text{ }}sec{\text{ }}\left( { - x} \right){\text{ }} + {\text{ }}tan{\text{ }}\left( { - x} \right){\text{ }} \times {\text{ }}\left( { - x} \right){\text{ }}} \right]\]
We also know that , \[tan{\text{ }}\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}tan{\text{ }}x\] and \[sec{\text{ }}\left( { - x} \right){\text{ }} = {\text{ }}sec{\text{ }}x\]
Using this , we get
\[f'\left( { - x} \right){\text{ }} = {\text{ }}2{\text{ }} \times {\text{ }}\left( { - x{\text{ }}} \right){\text{ }}sec{\text{ }}x{\text{ }} \times {\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}\left( { - {\text{ }}tan{\text{ }}x{\text{ }}} \right){\text{ }} \times {\text{ }}\left( { - {\text{ }}x} \right){\text{ }}} \right]\]
Also we know that product of two negative terms gives a positive result
\[f'\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}2{\text{ }}x{\text{ }} \times {\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]\]
Now , we can conclude that
\[f'\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}f\left( x \right)\] we also know that if we get this relation then the function is an odd function .
Hence , the derivative of function \[f\left( x \right)\] is an odd function
Thus , the correct answer is \[\left( 2 \right)\].
Note: If after replacing \[\;x\] by \[ - x\] in \[f'\left( x \right)\] and we would get the result that \[f\left( { - x} \right){\text{ }} = {\text{ }}f\left( x \right)\] , then we would have stated that function is an even function .
We differentiated \[y\] with respect to to find \[\dfrac{{dy}}{{dx}}\] . We know the differentiation of trigonometric function :
\[\dfrac{{d\left[ {cos{\text{ }}x} \right]}}{{dx}} = {\text{ }} - sin{\text{ }}x\]
\[\dfrac{{d\left[ {sin{\text{ }}x} \right]}}{{dx}}{\text{ }} = {\text{ }}cos{\text{ }}x\]
$d[{x^n}] = n{x^{(n - 1)}}$
$d[\tan x] = se{c^2}x$
Derivative of product of two function is given by the following product rule :
\[\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = {\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\]
Complete step-by-step solution:
Given : $f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}}$
Let \[f\left( x \right){\text{ }} = {\text{ }}y\]
So ,
$y = f(x) = \dfrac{{{x^2}}}{{[1 - si{n^2}x]}}$
We know that , $si{n^2}x + co{s^2}x = 1$
Using this formula , we get
$co{s^2}x = 1 - si{n^2}x$
Putting this in \[y\] , we get
$y = \dfrac{{{x^2}}}{{co{s^2}x}}$
Also we know that \[cos{\text{ }}x{\text{ }} = \dfrac{1}{{{\text{ }}sec{\text{ }}x}}\]
Hence , the function becomes
$y = {x^2} \times se{c^2}x$
Now we have to derivative of \[y\] with respect to
Using product rule of differentiation , ( derivative of ${x^n} = n \times {x^{(n - 1)}}$ ) and ( derivative of \[sec{\text{ }}x{\text{ }} = {\text{ }}sec{\text{ }}x{\text{ }} \times {\text{ }}tan{\text{ }}x\] ) , we get
$\dfrac{{dy}}{{dx}} = 2xse{c^2}x + 2\sec x \times \tan x \times {x^2}$
Taking elements common , we get
\[\dfrac{{dy}}{{dx}} = {\text{ }}2x{\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]\]
The derivative of function \[f\left( x \right){\text{ }} = {\text{ }}f'\left( x \right){\text{ }} = \dfrac{{dy}}{{dx}}\]
So ,
\[f'\left( x \right){\text{ }} = {\text{ }}2x{\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]\]
Now , we will replace \[\;x\] by \[ - x\] in \[f'\left( x \right)\] to check whether the function is an even or an odd function
Replacing \[x\] by \[ - x\] , we get
\[f'\left( { - x} \right){\text{ }} = {\text{ }}2{\text{ }} \times {\text{ }}\left( { - x{\text{ }}} \right){\text{ }}sec{\text{ }}\left( { - x} \right){\text{ }} \times {\text{ }}\left[ {{\text{ }}sec{\text{ }}\left( { - x} \right){\text{ }} + {\text{ }}tan{\text{ }}\left( { - x} \right){\text{ }} \times {\text{ }}\left( { - x} \right){\text{ }}} \right]\]
We also know that , \[tan{\text{ }}\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}tan{\text{ }}x\] and \[sec{\text{ }}\left( { - x} \right){\text{ }} = {\text{ }}sec{\text{ }}x\]
Using this , we get
\[f'\left( { - x} \right){\text{ }} = {\text{ }}2{\text{ }} \times {\text{ }}\left( { - x{\text{ }}} \right){\text{ }}sec{\text{ }}x{\text{ }} \times {\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}\left( { - {\text{ }}tan{\text{ }}x{\text{ }}} \right){\text{ }} \times {\text{ }}\left( { - {\text{ }}x} \right){\text{ }}} \right]\]
Also we know that product of two negative terms gives a positive result
\[f'\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}2{\text{ }}x{\text{ }} \times {\text{ }}sec{\text{ }}x{\text{ }}\left[ {{\text{ }}sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }} \times {\text{ }}x{\text{ }}} \right]\]
Now , we can conclude that
\[f'\left( { - x} \right){\text{ }} = {\text{ }} - {\text{ }}f\left( x \right)\] we also know that if we get this relation then the function is an odd function .
Hence , the derivative of function \[f\left( x \right)\] is an odd function
Thus , the correct answer is \[\left( 2 \right)\].
Note: If after replacing \[\;x\] by \[ - x\] in \[f'\left( x \right)\] and we would get the result that \[f\left( { - x} \right){\text{ }} = {\text{ }}f\left( x \right)\] , then we would have stated that function is an even function .
We differentiated \[y\] with respect to to find \[\dfrac{{dy}}{{dx}}\] . We know the differentiation of trigonometric function :
\[\dfrac{{d\left[ {cos{\text{ }}x} \right]}}{{dx}} = {\text{ }} - sin{\text{ }}x\]
\[\dfrac{{d\left[ {sin{\text{ }}x} \right]}}{{dx}}{\text{ }} = {\text{ }}cos{\text{ }}x\]
$d[{x^n}] = n{x^{(n - 1)}}$
$d[\tan x] = se{c^2}x$
Derivative of product of two function is given by the following product rule :
\[\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}}{\text{ }} = {\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} \times {\text{ }}g{\text{ }} + {\text{ }}f{\text{ }} \times \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

