
Volume of the tetrahedron whose vertices are represented by the position vectors, \[A(0,1,2);\,B(3,0,1);\,C(4,3,6)\] and \[D(2,3,2)\] is
A. \[3\]
B. \[6\]
C. \[36\]
D.None
Answer
553.5k+ views
Hint: We are asked to find the volume of the tetrahedron. For this, recall the formula for volume of a tetrahedron. The vertices of the tetrahedron are given, draw a tetrahedron showing the vertices and find the edges. Using these edges find the volume of the tetrahedron
Complete step-by-step answer:
Given, the vertices of the tetrahedron are \[A(0,1,2);\,B(3,0,1);\,C(4,3,6)\] and \[D(2,3,2)\]
Let us draw a tetrahedron with the given vertices,
In the form of vectors, the points can be written as,
\[\overrightarrow {\text{A}} = 0\widehat {\text{i}} + 1\widehat {\text{j}} + 2\widehat {\text{k}}\]
\[\overrightarrow {\text{B}} = 3\widehat {\text{i}} + 0\widehat {\text{j}} + 1\widehat {\text{k}}\]
\[\overrightarrow {\text{C}} = 4\widehat {\text{i}} + 3\widehat {\text{j}} + 6\widehat {\text{k}}\]
\[\overrightarrow {\text{D}} = 2\widehat {\text{i}} + 3\widehat {\text{j}} + 2\widehat {\text{k}}\]
Volume of a tetrahedron can be expressed as,
\[V = \dfrac{1}{6}\left| {\overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c )} \right|\] (i)
where \[a\] , \[b\] and \[c\] are three non coplanar vectors which represent the four coterminous edges.
Now, let us find the edges of the given tetrahedron
\[\overrightarrow {{\text{AB}}} = \overrightarrow {\text{B}} - \overrightarrow {\text{A}} = (3 - 0)\widehat {\text{i}} + (0 - 1)\widehat {\text{j}} + (1 - 2)\widehat {\text{k}} = 3\widehat {\text{i}} - 1\widehat {\text{j}} - 1\widehat {\text{k}}\]
\[\overrightarrow {{\text{AC}}} = \overrightarrow {\text{C}} - \overrightarrow {\text{A}} = (4 - 0)\widehat {\text{i}} + (3 - 1)\widehat {\text{j}} + (6 - 2)\widehat {\text{k}} = 4\widehat {\text{i}} + 2\widehat {\text{j}} + 4\widehat {\text{k}}\]
\[\overrightarrow {{\text{AD}}} = \overrightarrow {\text{D}} - \overrightarrow {\text{A}} = (2 - 0)\widehat {\text{i}} + (3 - 1)\widehat {\text{j}} + (2 - 2)\widehat {\text{k}} = 2\widehat {\text{i}} + 2\widehat {\text{j}} + 0\widehat {\text{k}} = 2\widehat {\text{i}} + 2\widehat {\text{j}}\]
Vectors \[\overrightarrow {{\text{AB}}} \] , \[\overrightarrow {{\text{AC}}} \] and \[\overrightarrow {{\text{AD}}} \] are three non coplanar vectors. Therefore, volume of the tetrahedron using the formula from equation (i) is,
\[V = \dfrac{1}{6}\left| {\overrightarrow {{\text{AB}}} \cdot (\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AD}}} )} \right|\] (ii)
Let us solve this part by part.
First let us take \[\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AD}}} \] ,
Putting the values of \[\overrightarrow {{\text{AC}}} \] and \[\overrightarrow {{\text{AD}}} \] we get,
\[\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AD}}} = \left[ {\left( {4\widehat {\text{i}} + 2\widehat {\text{j}} + 4\widehat {\text{k}}} \right) \times \left( {2\widehat {\text{i}} + 2\widehat {\text{j}}} \right)} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{\widehat {\text{i}}}&{\widehat {\text{j}}}&{\widehat {\text{k}}} \\
4&2&4 \\
2&2&0
\end{array}} \right] \]
\[= (2 \times 0 - 4 \times 2)\widehat {\text{i}} - (4 \times 0 - 4 \times 2)\widehat {\text{j}} + (4 \times 2 - 2 \times 2)\widehat {\text{k}} \\
= - 8\widehat {\text{i}} + 8\widehat {\text{j}} + 4\widehat {\text{k}} \]
Now, putting the value of \[\overrightarrow {{\text{AB}}} \] and \[\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AD}}} \] in equation (ii), we get
\[V = \dfrac{1}{6}\left| {\left( {3\widehat {\text{i}} - 1\widehat {\text{j}} - 1\widehat {\text{k}}} \right) \cdot \left( { - 8\widehat {\text{i}} + 8\widehat {\text{j}} + 4\widehat {\text{k}}} \right)} \right| \\
\Rightarrow V = \dfrac{1}{6}\left| { - 24 - 8 - 4} \right| \\
\Rightarrow V = \dfrac{1}{6}\left| { - 36} \right| \\
\Rightarrow V = \dfrac{1}{6} \times 36 = 6\,{\text{unit}}\,{\text{cube}} \]
Therefore, the volume of the tetrahedron is \[6\,{\text{unit}}\,{\text{cube}}\] .
So, the correct answer is “Option C”.
Note: There are few more important geometrical shapes in three-dimension, these are cube, cuboid, pentagonal prism, hexagonal prism, octahedron, cone, cylinder, ellipsoid. The number of vertices, faces and edges are different for different shapes. Students usually get confused between the number of vertices and edges of different shapes which leads to an incorrect answer so, always try to remember the number of vertices, edges and faces for each shape.
Complete step-by-step answer:
Given, the vertices of the tetrahedron are \[A(0,1,2);\,B(3,0,1);\,C(4,3,6)\] and \[D(2,3,2)\]
Let us draw a tetrahedron with the given vertices,
In the form of vectors, the points can be written as,
\[\overrightarrow {\text{A}} = 0\widehat {\text{i}} + 1\widehat {\text{j}} + 2\widehat {\text{k}}\]
\[\overrightarrow {\text{B}} = 3\widehat {\text{i}} + 0\widehat {\text{j}} + 1\widehat {\text{k}}\]
\[\overrightarrow {\text{C}} = 4\widehat {\text{i}} + 3\widehat {\text{j}} + 6\widehat {\text{k}}\]
\[\overrightarrow {\text{D}} = 2\widehat {\text{i}} + 3\widehat {\text{j}} + 2\widehat {\text{k}}\]
Volume of a tetrahedron can be expressed as,
\[V = \dfrac{1}{6}\left| {\overrightarrow a \cdot (\overrightarrow b \times \overrightarrow c )} \right|\] (i)
where \[a\] , \[b\] and \[c\] are three non coplanar vectors which represent the four coterminous edges.
Now, let us find the edges of the given tetrahedron
\[\overrightarrow {{\text{AB}}} = \overrightarrow {\text{B}} - \overrightarrow {\text{A}} = (3 - 0)\widehat {\text{i}} + (0 - 1)\widehat {\text{j}} + (1 - 2)\widehat {\text{k}} = 3\widehat {\text{i}} - 1\widehat {\text{j}} - 1\widehat {\text{k}}\]
\[\overrightarrow {{\text{AC}}} = \overrightarrow {\text{C}} - \overrightarrow {\text{A}} = (4 - 0)\widehat {\text{i}} + (3 - 1)\widehat {\text{j}} + (6 - 2)\widehat {\text{k}} = 4\widehat {\text{i}} + 2\widehat {\text{j}} + 4\widehat {\text{k}}\]
\[\overrightarrow {{\text{AD}}} = \overrightarrow {\text{D}} - \overrightarrow {\text{A}} = (2 - 0)\widehat {\text{i}} + (3 - 1)\widehat {\text{j}} + (2 - 2)\widehat {\text{k}} = 2\widehat {\text{i}} + 2\widehat {\text{j}} + 0\widehat {\text{k}} = 2\widehat {\text{i}} + 2\widehat {\text{j}}\]
Vectors \[\overrightarrow {{\text{AB}}} \] , \[\overrightarrow {{\text{AC}}} \] and \[\overrightarrow {{\text{AD}}} \] are three non coplanar vectors. Therefore, volume of the tetrahedron using the formula from equation (i) is,
\[V = \dfrac{1}{6}\left| {\overrightarrow {{\text{AB}}} \cdot (\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AD}}} )} \right|\] (ii)
Let us solve this part by part.
First let us take \[\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AD}}} \] ,
Putting the values of \[\overrightarrow {{\text{AC}}} \] and \[\overrightarrow {{\text{AD}}} \] we get,
\[\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AD}}} = \left[ {\left( {4\widehat {\text{i}} + 2\widehat {\text{j}} + 4\widehat {\text{k}}} \right) \times \left( {2\widehat {\text{i}} + 2\widehat {\text{j}}} \right)} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{\widehat {\text{i}}}&{\widehat {\text{j}}}&{\widehat {\text{k}}} \\
4&2&4 \\
2&2&0
\end{array}} \right] \]
\[= (2 \times 0 - 4 \times 2)\widehat {\text{i}} - (4 \times 0 - 4 \times 2)\widehat {\text{j}} + (4 \times 2 - 2 \times 2)\widehat {\text{k}} \\
= - 8\widehat {\text{i}} + 8\widehat {\text{j}} + 4\widehat {\text{k}} \]
Now, putting the value of \[\overrightarrow {{\text{AB}}} \] and \[\overrightarrow {{\text{AC}}} \times \overrightarrow {{\text{AD}}} \] in equation (ii), we get
\[V = \dfrac{1}{6}\left| {\left( {3\widehat {\text{i}} - 1\widehat {\text{j}} - 1\widehat {\text{k}}} \right) \cdot \left( { - 8\widehat {\text{i}} + 8\widehat {\text{j}} + 4\widehat {\text{k}}} \right)} \right| \\
\Rightarrow V = \dfrac{1}{6}\left| { - 24 - 8 - 4} \right| \\
\Rightarrow V = \dfrac{1}{6}\left| { - 36} \right| \\
\Rightarrow V = \dfrac{1}{6} \times 36 = 6\,{\text{unit}}\,{\text{cube}} \]
Therefore, the volume of the tetrahedron is \[6\,{\text{unit}}\,{\text{cube}}\] .
So, the correct answer is “Option C”.
Note: There are few more important geometrical shapes in three-dimension, these are cube, cuboid, pentagonal prism, hexagonal prism, octahedron, cone, cylinder, ellipsoid. The number of vertices, faces and edges are different for different shapes. Students usually get confused between the number of vertices and edges of different shapes which leads to an incorrect answer so, always try to remember the number of vertices, edges and faces for each shape.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

