
Verify the following:
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\sin {{30}^{0}}$
Answer
608.1k+ views
Hint: The trigonometric ratios table helps to find the values of trigonometric standard angles such as ${{0}^{0}},{{30}^{0}},{{45}^{0}},{{60}^{0}}$ and ${{90}^{0}}$. It consists of trigonometric ratios – sine, cosine, tangent, cosecant, secant and cotangent. These ratios can be written in short as sin, cos, tan, cosec, sec and cot.
Complete step-by-step answer:
The value of the trigonometric ratios by using the trigonometric table is given below.
$\sin {{60}^{0}}=\dfrac{\sqrt{3}}{2},\sin {{30}^{0}}=\dfrac{1}{2},\cos {{60}^{0}}=\dfrac{1}{2},\cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}$
Let us consider the left side of the given expression
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\times \dfrac{1}{2}$
Multiplying the terms on the right side, we get
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{3}{4}-\dfrac{1}{4}$
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{3-1}{4}$
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{2}{4}$
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{1}{2}$
From the trigonometric table, $\dfrac{1}{2}=\sin {{30}^{0}}$
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\sin {{30}^{0}}$
Hence the given expression is verified
Note: Alternatively, the given question is verified by using a formula for the sine of the difference of two angles, $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$. Let $A={{60}^{0}}$ and $B={{30}^{0}}$, then $\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\sin \left( {{60}^{0}}-{{30}^{0}} \right)=\sin {{30}^{0}}$.
Complete step-by-step answer:
The value of the trigonometric ratios by using the trigonometric table is given below.
$\sin {{60}^{0}}=\dfrac{\sqrt{3}}{2},\sin {{30}^{0}}=\dfrac{1}{2},\cos {{60}^{0}}=\dfrac{1}{2},\cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}$
Let us consider the left side of the given expression
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\times \dfrac{1}{2}$
Multiplying the terms on the right side, we get
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{3}{4}-\dfrac{1}{4}$
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{3-1}{4}$
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{2}{4}$
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\dfrac{1}{2}$
From the trigonometric table, $\dfrac{1}{2}=\sin {{30}^{0}}$
$\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\sin {{30}^{0}}$
Hence the given expression is verified
Note: Alternatively, the given question is verified by using a formula for the sine of the difference of two angles, $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$. Let $A={{60}^{0}}$ and $B={{30}^{0}}$, then $\sin {{60}^{0}}\cos {{30}^{0}}-\cos {{60}^{0}}\sin {{30}^{0}}=\sin \left( {{60}^{0}}-{{30}^{0}} \right)=\sin {{30}^{0}}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

List out three methods of soil conservation

What is the relation between orthocenter circumcentre class 10 maths CBSE

