
Verify division algorithm i.e, Dividend=Divisor×Quotient+Remainder, in each of the following:
I) \[14{x^2} + 13x - 15\] by \[7x - 4\]
II) \[15{z^2} - 20{z^2} - 13z - 12\] by \[3z - 6\]
III) \[34x - 22{x^3} - 12{x^4} - 10{x^2} - 75\] by \[3x + 7\]
IV) \[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\] by \[3y - 2\]
V) \[6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6\] by \[2{y^3} + 1\]
VI) \[4{y^3} + 8{y^2} + 8y + 7\] by \[2{y^2} - y + 1\]
Answer
509.1k+ views
Hint: The polynomial division algorithm is the method of dividing the terms that consists of polynomials with variables x, y or something else. We will follow the polynomial division algorithm to solve the equations.
Complete step-by-step answer:
i) \[14{x^2} + 13x - 15\] by \[7x - 4\]
It is given that the dividend is D=\[14{x^2} + 13x - 15\].
The divisor is given as d=\[7x - 4\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
$ \begin{array}{l}
7x - 4\mathop{\left){\vphantom{1{14{x^2} + 13x - 15}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{14{x^2} + 13x - 15}}}}
\limits^{\displaystyle \,\,\, {2x + 3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\
\;\;\;\;\;\;\;\;\;\dfrac{{\,\,\,14{x^2}\, - 8x\;\;\;\;\;\;\;\;\;\;}}{\begin{array}{l}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,21x - 15\\
\dfrac{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,21x - 12}}{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 3}}
\end{array}}
\end{array} $
On dividing we get quotient as \[2x + 3\] and remainder as -3.
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {7x - 4} \right)\left( {2x + 3} \right) - 3\\
= 14{x^2} + 13x - 15
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
ii) \[15{z^3} - 20{z^2} - 13z - 12\,\]by \[3z - 6\]
The dividend is \[D = 15{z^3} - 20{z^2} - 13z - 12\,\].
The divisor is given as \[d = 3z - 6\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
3z - 6\mathop{\left){\vphantom{1{15{z^3} - 20{z^2} - 13z - 12\,}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{15{z^3} - 20{z^2} - 13z - 12\,}}}}
\limits^{\displaystyle \,\,\, {5{z^2} + \dfrac{{10}}{3}z + \dfrac{{20}}{3}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\
\;\;\;\;\;\;\;\;\;\dfrac{{15{z^3}\, - 30{z^2}\;\;\;\;\;\;\;\;\;\;}}{\begin{array}{l}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,10{z^2} - 13z\\
\dfrac{{\,\,\,\,\,10{z^2} - 20z}}{\begin{array}{l}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,7z - 12\\
\dfrac{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,10{z^2} - 20z}}{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,
\end{array}}
\end{array}}
\end{array}\]
On dividing we get quotient as \[5{z^2} + \dfrac{{10}}{3}z + \dfrac{{20}}{3}\] and remainder as -2.
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {3z - 6} \right)\left( {5{z^2} + \dfrac{{10}}{3}z + \dfrac{{20}}{3}} \right) - 2\\
= 15{z^3} - 20{z^2} - 13z - 12\,
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
iii) \[34x - 22{x^3} - 12{x^4} - 10{x^2} - 75\]by \[3x + 7\]
The dividend is \[34x - 22{x^3} - 12{x^4} - 10{x^2} - 75\].
The divisor is given as \[3x + 7\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
x - 3\mathop{\left){\vphantom{1{ - 12{x^4} - 22{x^3} - 10{x^2} + 34x - 75}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{ - 12{x^4} - 22{x^3} - 10{x^2} + 34x - 75}}}}
\limits^{\displaystyle \,\,\, { - 4{x^3} + 2{x^2} - 8x + 30}}\\
\;\;\;\;\;\;\;\;\;\dfrac{{ - 12{x^4} - 28{x^3}}}{\begin{array}{l}
\,6{x^3} - 10{x^2}\\
\dfrac{{6{x^3} + 14{x^2}}}{\begin{array}{l}
- 24{x^2} + 34x\\
\dfrac{{ - 24{x^2} - 56x}}{\begin{array}{l}
90x + 75\\
\dfrac{{90x + 210}}{{ - 135}}
\end{array}}
\end{array}}
\end{array}}
\end{array}\]
On dividing we get quotient as \[ - 4{x^3} + 2{x^2} - 8x + 30\] and remainder as -135.
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {3x + 7} \right)\left( { - 4{x^3} + 2{x^2} - 8x + 30} \right) + - 135\\
= 34x - 22{x^3} - 12{x^4} - 10{x^2} - 75
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
iv) \[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\] by \[3y - 2\]
The dividend is \[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\].
The divisor is \[3y - 2\].
iv)\[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\]by \[3y - 2\]
It is given that the dividend is D=\[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\].
The divisor is given as d=\[3y - 2\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
3y - 2\mathop{\left){\vphantom{1{15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6}}}}
\limits^{\displaystyle \,\,\, {5{y^3} - 2{y^2} + \dfrac{{13}}{3}y - \dfrac{{16}}{9}}}\\
\;\;\;\;\;\;\;\;\;\dfrac{{ - 15{y^4} - 10{y^3}}}{\begin{array}{l}
\,6{y^3} - 9{y^2}\\
\dfrac{{\,6{y^3} + 4{y^2}}}{\begin{array}{l}
- 13{y^2} + \dfrac{{10y}}{3} + 6\\
\dfrac{{ - 13{y^2} + \dfrac{{26y}}{3}}}{\begin{array}{l}
\dfrac{{ - 16y}}{3} + 6\\
\dfrac{{\dfrac{{16y}}{3} + \dfrac{{32}}{9}}}{{\dfrac{{22}}{9}}}
\end{array}}
\end{array}}
\end{array}}
\end{array}\]
On dividing we get quotient as \[5{y^3} - 2{y^2} + \dfrac{{13}}{3}y - \dfrac{{16}}{9}\] and remainder as \[\dfrac{{22}}{9}\].
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {3y - 2} \right)\left( {5{y^3} - 2{y^2} + \dfrac{{13}}{3}y - \dfrac{{16}}{9}} \right) + \dfrac{{22}}{9}\\
= 15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
v) \[6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6\] by \[2{y^3} + 1\]
It is given that the dividend is \[6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6\].
The divisor is given as \[2{y^3} + 1\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
3y - 2\mathop{\left){\vphantom{1{6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6}}}}
\limits^{\displaystyle \,\,\, {3{y^2} + 2y + 2}}\\
\;\;\;\;\;\;\;\;\;\dfrac{{ - 6{y^5} + 3{y^2}}}{\begin{array}{l}
4{y^4} + 4{y^3} + 4{y^2} + 27y + 6\\
\dfrac{{ - 4{y^4} + 0{y^3} + 0{y^2} + 2y}}{\begin{array}{l}
4{y^3} + 4{y^2} + 25y + 6\\
\dfrac{{ - 4{y^3} + 0{y^2} + 0y + 2}}{{4{y^2} + 25y + 4}}
\end{array}}
\end{array}}
\end{array}\]
On dividing we get a quotient as \[3{y^2} + 2y + 2\]and remainder as \[4{y^2} + 25y + 4\].
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {2{y^3} + 1} \right)\left( {3{y^2} + 2y + 2} \right) + 4{y^2} + 25y + 4\\
= 6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
vi) \[4{y^3} + 8{y^2} + 8y + 7\] by \[2{y^2} - y + 1\]
It is given that the dividend is \[4{y^3} + 8{y^2} + 8y + 7\].
The divisor is given as \[2{y^2} - y + 1\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
2{y^2} - y + 1\mathop{\left){\vphantom{1{4{y^3} + 8{y^2} + 8y + 7}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{4{y^3} + 8{y^2} + 8y + 7}}}}
\limits^{\displaystyle \,\,\, {2y + 5}}\\
\;\;\;\;\;\;\;\;\;\dfrac{{ - 4{y^3} - 8{y^2} + 2y}}{\begin{array}{l}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,10{y^2} + 6y + 7\\
\dfrac{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 10{y^2} - 5y + 5}}{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,11y + 2}}
\end{array}}\,\,\,\,\,\,\,\,\,\,\,\,\,
\end{array}\]
we get quotient as \[2y + 5\] and remainder as \[11y + 2\].
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {2{y^2} - y + 1} \right)\left( {2y + 5} \right) + 11y + 2\\
= 4{y^3} + 8{y^2} + 8y + 7
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
Note: Make sure that the polynomials in the process are sensitive and even a small mistake of placing the sign will lead to the wrong answer and collapse the whole procedure. So after division if you get the quotient and remainder then substitute the values to find whether the answer is correct or wrong.
Complete step-by-step answer:
i) \[14{x^2} + 13x - 15\] by \[7x - 4\]
It is given that the dividend is D=\[14{x^2} + 13x - 15\].
The divisor is given as d=\[7x - 4\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
$ \begin{array}{l}
7x - 4\mathop{\left){\vphantom{1{14{x^2} + 13x - 15}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{14{x^2} + 13x - 15}}}}
\limits^{\displaystyle \,\,\, {2x + 3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\
\;\;\;\;\;\;\;\;\;\dfrac{{\,\,\,14{x^2}\, - 8x\;\;\;\;\;\;\;\;\;\;}}{\begin{array}{l}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,21x - 15\\
\dfrac{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,21x - 12}}{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 3}}
\end{array}}
\end{array} $
On dividing we get quotient as \[2x + 3\] and remainder as -3.
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {7x - 4} \right)\left( {2x + 3} \right) - 3\\
= 14{x^2} + 13x - 15
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
ii) \[15{z^3} - 20{z^2} - 13z - 12\,\]by \[3z - 6\]
The dividend is \[D = 15{z^3} - 20{z^2} - 13z - 12\,\].
The divisor is given as \[d = 3z - 6\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
3z - 6\mathop{\left){\vphantom{1{15{z^3} - 20{z^2} - 13z - 12\,}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{15{z^3} - 20{z^2} - 13z - 12\,}}}}
\limits^{\displaystyle \,\,\, {5{z^2} + \dfrac{{10}}{3}z + \dfrac{{20}}{3}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\
\;\;\;\;\;\;\;\;\;\dfrac{{15{z^3}\, - 30{z^2}\;\;\;\;\;\;\;\;\;\;}}{\begin{array}{l}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,10{z^2} - 13z\\
\dfrac{{\,\,\,\,\,10{z^2} - 20z}}{\begin{array}{l}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,7z - 12\\
\dfrac{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,10{z^2} - 20z}}{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,
\end{array}}
\end{array}}
\end{array}\]
On dividing we get quotient as \[5{z^2} + \dfrac{{10}}{3}z + \dfrac{{20}}{3}\] and remainder as -2.
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {3z - 6} \right)\left( {5{z^2} + \dfrac{{10}}{3}z + \dfrac{{20}}{3}} \right) - 2\\
= 15{z^3} - 20{z^2} - 13z - 12\,
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
iii) \[34x - 22{x^3} - 12{x^4} - 10{x^2} - 75\]by \[3x + 7\]
The dividend is \[34x - 22{x^3} - 12{x^4} - 10{x^2} - 75\].
The divisor is given as \[3x + 7\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
x - 3\mathop{\left){\vphantom{1{ - 12{x^4} - 22{x^3} - 10{x^2} + 34x - 75}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{ - 12{x^4} - 22{x^3} - 10{x^2} + 34x - 75}}}}
\limits^{\displaystyle \,\,\, { - 4{x^3} + 2{x^2} - 8x + 30}}\\
\;\;\;\;\;\;\;\;\;\dfrac{{ - 12{x^4} - 28{x^3}}}{\begin{array}{l}
\,6{x^3} - 10{x^2}\\
\dfrac{{6{x^3} + 14{x^2}}}{\begin{array}{l}
- 24{x^2} + 34x\\
\dfrac{{ - 24{x^2} - 56x}}{\begin{array}{l}
90x + 75\\
\dfrac{{90x + 210}}{{ - 135}}
\end{array}}
\end{array}}
\end{array}}
\end{array}\]
On dividing we get quotient as \[ - 4{x^3} + 2{x^2} - 8x + 30\] and remainder as -135.
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {3x + 7} \right)\left( { - 4{x^3} + 2{x^2} - 8x + 30} \right) + - 135\\
= 34x - 22{x^3} - 12{x^4} - 10{x^2} - 75
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
iv) \[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\] by \[3y - 2\]
The dividend is \[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\].
The divisor is \[3y - 2\].
iv)\[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\]by \[3y - 2\]
It is given that the dividend is D=\[15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6\].
The divisor is given as d=\[3y - 2\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
3y - 2\mathop{\left){\vphantom{1{15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6}}}}
\limits^{\displaystyle \,\,\, {5{y^3} - 2{y^2} + \dfrac{{13}}{3}y - \dfrac{{16}}{9}}}\\
\;\;\;\;\;\;\;\;\;\dfrac{{ - 15{y^4} - 10{y^3}}}{\begin{array}{l}
\,6{y^3} - 9{y^2}\\
\dfrac{{\,6{y^3} + 4{y^2}}}{\begin{array}{l}
- 13{y^2} + \dfrac{{10y}}{3} + 6\\
\dfrac{{ - 13{y^2} + \dfrac{{26y}}{3}}}{\begin{array}{l}
\dfrac{{ - 16y}}{3} + 6\\
\dfrac{{\dfrac{{16y}}{3} + \dfrac{{32}}{9}}}{{\dfrac{{22}}{9}}}
\end{array}}
\end{array}}
\end{array}}
\end{array}\]
On dividing we get quotient as \[5{y^3} - 2{y^2} + \dfrac{{13}}{3}y - \dfrac{{16}}{9}\] and remainder as \[\dfrac{{22}}{9}\].
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {3y - 2} \right)\left( {5{y^3} - 2{y^2} + \dfrac{{13}}{3}y - \dfrac{{16}}{9}} \right) + \dfrac{{22}}{9}\\
= 15{y^4} - 16{y^3} - 9{y^2} - \dfrac{{10}}{3}y + 6
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
v) \[6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6\] by \[2{y^3} + 1\]
It is given that the dividend is \[6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6\].
The divisor is given as \[2{y^3} + 1\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
3y - 2\mathop{\left){\vphantom{1{6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6}}}}
\limits^{\displaystyle \,\,\, {3{y^2} + 2y + 2}}\\
\;\;\;\;\;\;\;\;\;\dfrac{{ - 6{y^5} + 3{y^2}}}{\begin{array}{l}
4{y^4} + 4{y^3} + 4{y^2} + 27y + 6\\
\dfrac{{ - 4{y^4} + 0{y^3} + 0{y^2} + 2y}}{\begin{array}{l}
4{y^3} + 4{y^2} + 25y + 6\\
\dfrac{{ - 4{y^3} + 0{y^2} + 0y + 2}}{{4{y^2} + 25y + 4}}
\end{array}}
\end{array}}
\end{array}\]
On dividing we get a quotient as \[3{y^2} + 2y + 2\]and remainder as \[4{y^2} + 25y + 4\].
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {2{y^3} + 1} \right)\left( {3{y^2} + 2y + 2} \right) + 4{y^2} + 25y + 4\\
= 6{y^5} + 4{y^4} + 4{y^3} + 7{y^2} + 27y + 6
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
vi) \[4{y^3} + 8{y^2} + 8y + 7\] by \[2{y^2} - y + 1\]
It is given that the dividend is \[4{y^3} + 8{y^2} + 8y + 7\].
The divisor is given as \[2{y^2} - y + 1\].
We know the equation to verify the division algorithm which is given as,
\[D = d \times q + r\]
Now, we will use the dividing method, when we divide both the terms,
\[\begin{array}{l}
2{y^2} - y + 1\mathop{\left){\vphantom{1{4{y^3} + 8{y^2} + 8y + 7}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{{4{y^3} + 8{y^2} + 8y + 7}}}}
\limits^{\displaystyle \,\,\, {2y + 5}}\\
\;\;\;\;\;\;\;\;\;\dfrac{{ - 4{y^3} - 8{y^2} + 2y}}{\begin{array}{l}
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,10{y^2} + 6y + 7\\
\dfrac{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 10{y^2} - 5y + 5}}{{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,11y + 2}}
\end{array}}\,\,\,\,\,\,\,\,\,\,\,\,\,
\end{array}\]
we get quotient as \[2y + 5\] and remainder as \[11y + 2\].
On substituting the values in the above equation then we will get the Dividend as,
\[\begin{array}{c}
= \left( {2{y^2} - y + 1} \right)\left( {2y + 5} \right) + 11y + 2\\
= 4{y^3} + 8{y^2} + 8y + 7
\end{array}\]
Therefore, the given equation is verified using the division algorithm.
Note: Make sure that the polynomials in the process are sensitive and even a small mistake of placing the sign will lead to the wrong answer and collapse the whole procedure. So after division if you get the quotient and remainder then substitute the values to find whether the answer is correct or wrong.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

How many ounces are in 500 mL class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Explain land use pattern in India and why has the land class 8 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE
