
Vector \[\overrightarrow c \] is perpendicular to vectors \[\overrightarrow a = (2, - 3,1)\] and \[\overrightarrow b = (1, - 2,3)\] satisfies the condition\[\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\]. Then vector \[\overrightarrow c \]is equal to
A. \[(7,5,1)\]
B. \[( - 7, - 5, - 1)\]
C. \[(1,1, - 1)\]
D. \[(-1, -1, - 1)\]
Answer
594.3k+ views
Hint: Two vectors A and B are perpendicular if and only if their scalar product is equal to zero.
That is \[(\overrightarrow A .\overrightarrow B ) = 0\]
Using this condition of perpendicular vectors we can find the value of\[\overrightarrow c \]and we will verify the answer found using the given second condition.
Complete step-by-step answer:
It is given that the vector \[\overrightarrow c \] is perpendicular to vectors \[\overrightarrow a = (2, - 3,1)\] and \[\overrightarrow b = (1, - 2,3)\].
It is also given that\[\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\].
Since, \[\overrightarrow c \] is perpendicular to \[\overrightarrow a \] and\[\overrightarrow b \].
We can say that\[\overrightarrow c \]is the constant multiple of the cross product of \[\overrightarrow a \] and\[\overrightarrow b \],
That is \[\overrightarrow c = \lambda (\overrightarrow a \times \overrightarrow b )\]… (1)
Where, \[\lambda \] is known as the constant multiplied with the cross product.
Now let us find the cross product of \[\overrightarrow a \] and\[\overrightarrow b \],
\[(\overrightarrow a \times \overrightarrow b ) = \left( {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\2&{ - 3}&1\\1&{ - 2}&3\end{array}} \right)\]
Let us solve the above matrix to find the value of cross product, we get,
\[(\overrightarrow a \times \overrightarrow b ) = ( - 9 + 2)\widehat i - (6 - 1\widehat {)j} + ( - 4 + 3)\widehat k\]
Which implies,
\[(\overrightarrow a \times \overrightarrow b ) = - 7\widehat i - 5\widehat j - \widehat k\]
Let us substitute the value of cross product in (1), we get,
\[\overrightarrow c = \lambda ( - 7\widehat i - 5\widehat j - \widehat k)\]
We have a second condition that,
\[\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\]
Now let us substitute the value of\[\overrightarrow c \]in the above condition, we get,
\[\lambda ( - 7\widehat i - 5\widehat j - \widehat k).(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\]
By the definition of scalar product we multiply the like vectors and by simplifying we get,
\[\lambda ( - 7 - 10 + 7) = 10\]
That is on solving we get,
\[ - 10\lambda = 10\]
Let us divide by \[ - 10\] on both sides we get,
\[\lambda = - 1\]
Let us substitute the above value in the value of \[\overrightarrow c \] we get,
\[\overrightarrow c = (7\widehat i + 5\widehat j + \widehat k)\]
So, the correct answer is “Option A”.
Additional information: The cross product \[(\overrightarrow a \times \overrightarrow b )\] is defined as a vector c that is perpendicular (orthogonal) to both “a” and “b”, with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span.
The cross product is defined by the formula
\[(\overrightarrow a \times \overrightarrow b ) = \left( {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right)\]
Note: Here in the given options, option (c) also satisfies the second condition \[\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\] but the option (c) fails with the first condition that it is not perpendicular to \[\overrightarrow a \] and \[\overrightarrow b \].
That is \[(\overrightarrow A .\overrightarrow B ) = 0\]
Using this condition of perpendicular vectors we can find the value of\[\overrightarrow c \]and we will verify the answer found using the given second condition.
Complete step-by-step answer:
It is given that the vector \[\overrightarrow c \] is perpendicular to vectors \[\overrightarrow a = (2, - 3,1)\] and \[\overrightarrow b = (1, - 2,3)\].
It is also given that\[\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\].
Since, \[\overrightarrow c \] is perpendicular to \[\overrightarrow a \] and\[\overrightarrow b \].
We can say that\[\overrightarrow c \]is the constant multiple of the cross product of \[\overrightarrow a \] and\[\overrightarrow b \],
That is \[\overrightarrow c = \lambda (\overrightarrow a \times \overrightarrow b )\]… (1)
Where, \[\lambda \] is known as the constant multiplied with the cross product.
Now let us find the cross product of \[\overrightarrow a \] and\[\overrightarrow b \],
\[(\overrightarrow a \times \overrightarrow b ) = \left( {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\2&{ - 3}&1\\1&{ - 2}&3\end{array}} \right)\]
Let us solve the above matrix to find the value of cross product, we get,
\[(\overrightarrow a \times \overrightarrow b ) = ( - 9 + 2)\widehat i - (6 - 1\widehat {)j} + ( - 4 + 3)\widehat k\]
Which implies,
\[(\overrightarrow a \times \overrightarrow b ) = - 7\widehat i - 5\widehat j - \widehat k\]
Let us substitute the value of cross product in (1), we get,
\[\overrightarrow c = \lambda ( - 7\widehat i - 5\widehat j - \widehat k)\]
We have a second condition that,
\[\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\]
Now let us substitute the value of\[\overrightarrow c \]in the above condition, we get,
\[\lambda ( - 7\widehat i - 5\widehat j - \widehat k).(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\]
By the definition of scalar product we multiply the like vectors and by simplifying we get,
\[\lambda ( - 7 - 10 + 7) = 10\]
That is on solving we get,
\[ - 10\lambda = 10\]
Let us divide by \[ - 10\] on both sides we get,
\[\lambda = - 1\]
Let us substitute the above value in the value of \[\overrightarrow c \] we get,
\[\overrightarrow c = (7\widehat i + 5\widehat j + \widehat k)\]
So, the correct answer is “Option A”.
Additional information: The cross product \[(\overrightarrow a \times \overrightarrow b )\] is defined as a vector c that is perpendicular (orthogonal) to both “a” and “b”, with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span.
The cross product is defined by the formula
\[(\overrightarrow a \times \overrightarrow b ) = \left( {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right)\]
Note: Here in the given options, option (c) also satisfies the second condition \[\overrightarrow c .(\overrightarrow i + 2\overrightarrow j - 7\overrightarrow k ) = 10\] but the option (c) fails with the first condition that it is not perpendicular to \[\overrightarrow a \] and \[\overrightarrow b \].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

