
Vector a and c are unit vectors and $\left| \overrightarrow{b} \right|\text{ = 4}$ . If angle between $\overrightarrow{b}$ and $\overrightarrow{c}$ is ${{\cos }^{-1}}\left( \dfrac{1}{4} \right)$ and \[\overrightarrow{a}\times \overrightarrow{b}\text{ = 2}\overrightarrow{a}\times \overrightarrow{c}\] , then $\overrightarrow{b}\text{ = }\lambda \overrightarrow{a}\text{ + 2}\overrightarrow{c}$. Find the value of $\lambda $ .
A. $\pm \text{ }\dfrac{1}{4}$
B. $\pm \text{ }\dfrac{1}{2}$
C. $\pm 4$
D. None of the above
Answer
611.4k+ views
Hint: Use the equation \[\overrightarrow{a}\times \overrightarrow{b}\text{ = 2}\overrightarrow{a}\times \overrightarrow{c}\] to obtain the relation $\overrightarrow{b}\text{ = }\lambda \overrightarrow{a}\text{ + 2}\overrightarrow{c}$. Adjust the relation accordingly so as to use the conditions given in the question. Take modulus on both sides of the equation and thus find the value of $\lambda $.
Complete step-by-step answer:
According to the question, \[\overrightarrow{a}\times \overrightarrow{b}\text{ = 2}\overrightarrow{a}\times \overrightarrow{c}\]
Now, this can be adjusted in the form,
\[\begin{align}
& \left( \overrightarrow{a}\times \overrightarrow{b} \right)\text{ }-\text{ }\left( 2\overrightarrow{a}\times \overrightarrow{c} \right)\text{ = }\overrightarrow{0} \\
& \Rightarrow \text{ }\overrightarrow{a}\times \left( \overrightarrow{b}\text{ }-\text{ 2}\overrightarrow{c} \right)\text{ = }\overrightarrow{0} \\
\end{align}\]
We know, the cross product of two vectors is a zero vector, if and only if the two vectors are collinear.
Thus, we can express this in the form,
\[\left( \overrightarrow{b}-\text{2}\overrightarrow{c} \right)\text{ = }\lambda \overrightarrow{a}\text{ }.....\left( \text{i} \right)\]
Here, $\lambda $is the linear coefficient factor between the two vectors $\overrightarrow{b}-2\overrightarrow{c}$ and $\overrightarrow{a}$.
Equation (i) can be readjusted as $\overrightarrow{b}\text{ = }\lambda \overrightarrow{a}\text{ + 2}\overrightarrow{c}$ . Thus, we get the relation between the three vectors as given in the question.
Taking modulus on both sides of the equation (i), we can write,
$\begin{align}
& \left| \overrightarrow{b}\text{ }-\text{ 2}\overrightarrow{c} \right|\text{ = }\left| \lambda \overrightarrow{a} \right| \\
& \Rightarrow \text{ }{{\left| \overrightarrow{b}\text{ }-\text{ 2}\overrightarrow{c} \right|}^{2}}\text{ = }{{\left| \lambda \overrightarrow{a} \right|}^{2}}\text{ }\left( \text{Squaring both sides as they are scalar quantities} \right) \\
& \Rightarrow \text{ }{{\left| \overrightarrow{b} \right|}^{2}}\text{ + }{{\left| 2\overrightarrow{c} \right|}^{2}}\text{ }-\text{ 2}\cdot \overrightarrow{b}\cdot 2\overrightarrow{c}\text{ = }{{\lambda }^{2}}{{\left| \overrightarrow{a} \right|}^{2}} \\
& \Rightarrow \text{ }{{\left| \overrightarrow{b} \right|}^{2}}\text{ + 4}\cdot {{\left| \overrightarrow{c} \right|}^{2}}\text{ }-\text{ 4}\left| \overrightarrow{b} \right|\left| \overrightarrow{c} \right|\cos \left( {{\cos }^{-1}}\dfrac{1}{4} \right)\text{ = }{{\lambda }^{2}}\cdot {{\left| \overrightarrow{a} \right|}^{2}}\text{ }\left( \text{Angle between }b\text{ and }c\text{ is }{{\cos }^{-1}}\dfrac{1}{4}\text{ } \right) \\
& \Rightarrow \text{ }{{\text{4}}^{2}}\text{ + 4}\cdot {{\text{1}}^{2}}\text{ }-\text{ 4}\cdot \text{4}\cdot \text{1}\cdot \dfrac{1}{4}\text{ = }{{\lambda }^{2}}\cdot {{1}^{2}}\text{ }\left( \text{Putting the values }\left| a \right|=1,\left| b \right|=4,\left| c \right|=1 \right) \\
& \Rightarrow \text{ 16 + 4 }-\text{ 4 = }{{\lambda }^{2}} \\
& \Rightarrow \text{ }{{\lambda }^{2}}\text{ = 16} \\
& \therefore \text{ }\lambda \text{ = }\pm \text{4} \\
\end{align}$
Thus, we obtain the value of $\lambda $ to be $\pm 4$
Hence, the correct answer is option C.
Note: The linear relation between the three vectors as given in the question needed to be readjusted to equation (i) and then taken modulus, because we are only given the angle between the vectors b and c. So, we have to keep b and c on the same side of the equation. If modulus was taken on the relation as given in the question, we would have needed the angle between a and c to proceed further and find the value of $\lambda $.
Complete step-by-step answer:
According to the question, \[\overrightarrow{a}\times \overrightarrow{b}\text{ = 2}\overrightarrow{a}\times \overrightarrow{c}\]
Now, this can be adjusted in the form,
\[\begin{align}
& \left( \overrightarrow{a}\times \overrightarrow{b} \right)\text{ }-\text{ }\left( 2\overrightarrow{a}\times \overrightarrow{c} \right)\text{ = }\overrightarrow{0} \\
& \Rightarrow \text{ }\overrightarrow{a}\times \left( \overrightarrow{b}\text{ }-\text{ 2}\overrightarrow{c} \right)\text{ = }\overrightarrow{0} \\
\end{align}\]
We know, the cross product of two vectors is a zero vector, if and only if the two vectors are collinear.
Thus, we can express this in the form,
\[\left( \overrightarrow{b}-\text{2}\overrightarrow{c} \right)\text{ = }\lambda \overrightarrow{a}\text{ }.....\left( \text{i} \right)\]
Here, $\lambda $is the linear coefficient factor between the two vectors $\overrightarrow{b}-2\overrightarrow{c}$ and $\overrightarrow{a}$.
Equation (i) can be readjusted as $\overrightarrow{b}\text{ = }\lambda \overrightarrow{a}\text{ + 2}\overrightarrow{c}$ . Thus, we get the relation between the three vectors as given in the question.
Taking modulus on both sides of the equation (i), we can write,
$\begin{align}
& \left| \overrightarrow{b}\text{ }-\text{ 2}\overrightarrow{c} \right|\text{ = }\left| \lambda \overrightarrow{a} \right| \\
& \Rightarrow \text{ }{{\left| \overrightarrow{b}\text{ }-\text{ 2}\overrightarrow{c} \right|}^{2}}\text{ = }{{\left| \lambda \overrightarrow{a} \right|}^{2}}\text{ }\left( \text{Squaring both sides as they are scalar quantities} \right) \\
& \Rightarrow \text{ }{{\left| \overrightarrow{b} \right|}^{2}}\text{ + }{{\left| 2\overrightarrow{c} \right|}^{2}}\text{ }-\text{ 2}\cdot \overrightarrow{b}\cdot 2\overrightarrow{c}\text{ = }{{\lambda }^{2}}{{\left| \overrightarrow{a} \right|}^{2}} \\
& \Rightarrow \text{ }{{\left| \overrightarrow{b} \right|}^{2}}\text{ + 4}\cdot {{\left| \overrightarrow{c} \right|}^{2}}\text{ }-\text{ 4}\left| \overrightarrow{b} \right|\left| \overrightarrow{c} \right|\cos \left( {{\cos }^{-1}}\dfrac{1}{4} \right)\text{ = }{{\lambda }^{2}}\cdot {{\left| \overrightarrow{a} \right|}^{2}}\text{ }\left( \text{Angle between }b\text{ and }c\text{ is }{{\cos }^{-1}}\dfrac{1}{4}\text{ } \right) \\
& \Rightarrow \text{ }{{\text{4}}^{2}}\text{ + 4}\cdot {{\text{1}}^{2}}\text{ }-\text{ 4}\cdot \text{4}\cdot \text{1}\cdot \dfrac{1}{4}\text{ = }{{\lambda }^{2}}\cdot {{1}^{2}}\text{ }\left( \text{Putting the values }\left| a \right|=1,\left| b \right|=4,\left| c \right|=1 \right) \\
& \Rightarrow \text{ 16 + 4 }-\text{ 4 = }{{\lambda }^{2}} \\
& \Rightarrow \text{ }{{\lambda }^{2}}\text{ = 16} \\
& \therefore \text{ }\lambda \text{ = }\pm \text{4} \\
\end{align}$
Thus, we obtain the value of $\lambda $ to be $\pm 4$
Hence, the correct answer is option C.
Note: The linear relation between the three vectors as given in the question needed to be readjusted to equation (i) and then taken modulus, because we are only given the angle between the vectors b and c. So, we have to keep b and c on the same side of the equation. If modulus was taken on the relation as given in the question, we would have needed the angle between a and c to proceed further and find the value of $\lambda $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

