
Vasudevan invested Rs. $60,000$ at an interest rate of $12\% $ per annum compounded half-yearly, what amount would he get
(i)After $6$ months
(ii)After $1$ year
Answer
560.1k+ views
Hint: Here we will use the formula to find the amount A is $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$ where A is the amount, P is principal, R is the rate of interest and n is the time period. Here we will take $n = 1$ for the amount after six months and $n = 2$ for the amount after one year, since the rate of interest is compounded half yearly.
Complete step-by-step answer:
Given that-
Principal, $P = \,{\text{Rs }}60,000$
Rate of interest, $R = 12\% $ per annum
$ \Rightarrow R = 6\% {\text{ }}\;per\,{\text{6 months}}$
(i)After $6$ months
Here, the interest is calculated half-yearly, $\therefore n = 6\;{\text{months = 1}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 60000 \times {\left( {1 + \dfrac{6}{{100}}} \right)^1}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 60000 \times {\left( {\dfrac{{100 + 6}}{{100}}} \right)^1} \\
\Rightarrow A = 60000 \times {\left( {\dfrac{{106}}{{100}}} \right)^1} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 60000 \times (10.6)$
Simplify the above equation-
$ \Rightarrow A = 63600{\text{ Rs}}{\text{.}}$
(ii)After $1$ year
Here, the interest is calculated half-yearly, $\therefore n = 12\;{\text{months = 2}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 60000 \times {\left( {1 + \dfrac{6}{{100}}} \right)^2}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 60000 \times {\left( {\dfrac{{100 + 6}}{{100}}} \right)^2} \\
\Rightarrow A = 60000 \times {\left( {\dfrac{{106}}{{100}}} \right)^2} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 60000 \times {(10.6)^2}$
Simplify the above equation-
$ \Rightarrow A = 67416{\text{ Rs}}{\text{.}}$
Hence, Vasudevan will get Rs. $63600$ and Rs. $67416$ respectively after six months and one year.
Note: Always convert the percentage rate of interest in the form of fraction or the decimals and then substitute further for the required solutions. Remember the difference between simple interest and compound interest and apply its concept wisely. Compound interest is the interest paid for the interest earned in the previous year. Be good in multiples and do simplification carefully. Do not forget to write the unit Rupees after calculation.
Complete step-by-step answer:
Given that-
Principal, $P = \,{\text{Rs }}60,000$
Rate of interest, $R = 12\% $ per annum
$ \Rightarrow R = 6\% {\text{ }}\;per\,{\text{6 months}}$
(i)After $6$ months
Here, the interest is calculated half-yearly, $\therefore n = 6\;{\text{months = 1}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 60000 \times {\left( {1 + \dfrac{6}{{100}}} \right)^1}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 60000 \times {\left( {\dfrac{{100 + 6}}{{100}}} \right)^1} \\
\Rightarrow A = 60000 \times {\left( {\dfrac{{106}}{{100}}} \right)^1} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 60000 \times (10.6)$
Simplify the above equation-
$ \Rightarrow A = 63600{\text{ Rs}}{\text{.}}$
(ii)After $1$ year
Here, the interest is calculated half-yearly, $\therefore n = 12\;{\text{months = 2}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 60000 \times {\left( {1 + \dfrac{6}{{100}}} \right)^2}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 60000 \times {\left( {\dfrac{{100 + 6}}{{100}}} \right)^2} \\
\Rightarrow A = 60000 \times {\left( {\dfrac{{106}}{{100}}} \right)^2} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 60000 \times {(10.6)^2}$
Simplify the above equation-
$ \Rightarrow A = 67416{\text{ Rs}}{\text{.}}$
Hence, Vasudevan will get Rs. $63600$ and Rs. $67416$ respectively after six months and one year.
Note: Always convert the percentage rate of interest in the form of fraction or the decimals and then substitute further for the required solutions. Remember the difference between simple interest and compound interest and apply its concept wisely. Compound interest is the interest paid for the interest earned in the previous year. Be good in multiples and do simplification carefully. Do not forget to write the unit Rupees after calculation.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What was the main occupation of early Aryans of rig class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Repeated addition of the same number is called a addition class 7 maths CBSE


