
Value(s) of $ {{\left( -i \right)}^{\dfrac{1}{3}}} $ is/are:
This question has multiple correct options.
A. $ \dfrac{\sqrt{3}-i}{2} $
B. $ \dfrac{\sqrt{3}+i}{2} $
C. $ \dfrac{-\sqrt{3}-i}{2} $
D. $ \dfrac{-\sqrt{3}+i}{2} $
Answer
566.7k+ views
Hint: Remember that $ i=\sqrt{-1} $ . Therefore, $ {{i}^{2}}=-1 $ and $ {{i}^{3}}=-i $ .
There are three cube roots of any number, one is real and two are complex numbers.
Use the following identity: $ {{a}^{3}}-{{b}^{3}}=(a-b)({{a}^{2}}+ab+{{b}^{2}}) $ .
Solve the quadratic equation $ a{{x}^{2}}+bx+c=0 $ by using the quadratic formula: $ x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} $.
Complete step by step answer:
We can write $ {{\left( -i \right)}^{\dfrac{1}{3}}}=z $ .
Cubing both the sides, we will get:
⇒ $ -i={{z}^{3}} $
Using the value $ -i={{i}^{3}} $ and bringing all the terms to the same side of the equation, we get:
⇒ $ {{z}^{3}}-{{i}^{3}}=0 $
On using the factorization $ {{a}^{3}}-{{b}^{3}}=(a-b)({{a}^{2}}+ab+{{b}^{2}}) $ , we have:
⇒ $ (z-i)({{z}^{2}}+zi+{{i}^{2}})=0 $
Using $ {{i}^{2}}=-1 $ and the fact that the product of two terms can be 0 only if at least one of them is 0, we conclude the following:
⇒ $ z-i=0 $ OR $ {{z}^{2}}+iz-1=0 $
Using the quadratic formula, we get:
⇒ $ z=i $ OR $ z=\dfrac{-i\pm \sqrt{{{i}^{2}}-4(1)(-1)}}{2(1)} $
⇒ $ z=i $ OR $ z=\dfrac{-i\pm \sqrt{-1+4}}{2} $
⇒ $ z=i $ OR $ z=\dfrac{-i+\sqrt{3}}{2} $ OR $ z=\dfrac{-i-\sqrt{3}}{2} $
∴ The correct answer options are A. $ \dfrac{\sqrt{3}-i}{2} $ and C. $ \dfrac{-\sqrt{3}-i}{2} $ .
Note: There are exactly 'n' nth-roots of any number.
The complex roots of a real number always occur in conjugate pairs.
One can also find the nth power of any complex number using the De' Moivre's formula:
$ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta $
A complex number can always be expressed in the polar form:
$ r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right) $
There are three cube roots of any number, one is real and two are complex numbers.
Use the following identity: $ {{a}^{3}}-{{b}^{3}}=(a-b)({{a}^{2}}+ab+{{b}^{2}}) $ .
Solve the quadratic equation $ a{{x}^{2}}+bx+c=0 $ by using the quadratic formula: $ x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} $.
Complete step by step answer:
We can write $ {{\left( -i \right)}^{\dfrac{1}{3}}}=z $ .
Cubing both the sides, we will get:
⇒ $ -i={{z}^{3}} $
Using the value $ -i={{i}^{3}} $ and bringing all the terms to the same side of the equation, we get:
⇒ $ {{z}^{3}}-{{i}^{3}}=0 $
On using the factorization $ {{a}^{3}}-{{b}^{3}}=(a-b)({{a}^{2}}+ab+{{b}^{2}}) $ , we have:
⇒ $ (z-i)({{z}^{2}}+zi+{{i}^{2}})=0 $
Using $ {{i}^{2}}=-1 $ and the fact that the product of two terms can be 0 only if at least one of them is 0, we conclude the following:
⇒ $ z-i=0 $ OR $ {{z}^{2}}+iz-1=0 $
Using the quadratic formula, we get:
⇒ $ z=i $ OR $ z=\dfrac{-i\pm \sqrt{{{i}^{2}}-4(1)(-1)}}{2(1)} $
⇒ $ z=i $ OR $ z=\dfrac{-i\pm \sqrt{-1+4}}{2} $
⇒ $ z=i $ OR $ z=\dfrac{-i+\sqrt{3}}{2} $ OR $ z=\dfrac{-i-\sqrt{3}}{2} $
∴ The correct answer options are A. $ \dfrac{\sqrt{3}-i}{2} $ and C. $ \dfrac{-\sqrt{3}-i}{2} $ .
Note: There are exactly 'n' nth-roots of any number.
The complex roots of a real number always occur in conjugate pairs.
One can also find the nth power of any complex number using the De' Moivre's formula:
$ {{\left( \cos \theta +i\sin \theta \right)}^{n}}=\cos n\theta +i\sin n\theta $
A complex number can always be expressed in the polar form:
$ r{{e}^{i\theta }}=r\left( \cos \theta +i\sin \theta \right) $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

