
What is the value of integral \[\int {{e^{ax}}\cos \left( {bx} \right)\,dx} \] ?
Answer
495.9k+ views
Hint: In the given question, we are required to find the value of an integral provided to us in the problem itself. So, we will evaluate the integral by using the integration by parts method. So, we consider the given integral as a new variable. We must know the integrals of exponential function and trigonometric functions in order to solve the given problem.
Complete step by step answer:
Consider $I = \int {{e^{ax}}\cos \left( {bx} \right)\,dx} $
In integration by parts method, we integrate a function which is a product of two functions using a formula:
$\int {f\left( x \right)g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]dx} } } $
Hence, using integration by parts method and considering ${e^{ax}}$ as first function and $\cos \left( {bx} \right)$ as second function, we get
\[ \Rightarrow I = \left[ {{e^{ax}}\int {\cos \left( {bx} \right)dx} } \right] - \int {\left[ {\dfrac{d}{{dx}}\left( {{e^{ax}}} \right) \times \int {\cos \left( {bx} \right)dx} } \right]} dx\]
Now, we know that the derivative of \[\left( {{e^{ax}}} \right)\] with respect to x is \[a{e^{ax}}\] using the chain rule of differentiation. Also, we know that the integral of $\cos \left( {bx} \right)$ with respect to x is $\dfrac{{\sin \left( {bx} \right)}}{b}$.
\[ \Rightarrow I = \left[ {{e^{ax}} \times \dfrac{{\sin \left( {bx} \right)}}{b}} \right] - \int {\left[ {a{e^{ax}} \times \dfrac{{\sin \left( {bx} \right)}}{b}} \right]} dx\]
Simplifying the expression, we get,
\[ \Rightarrow I = \left[ {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right] - \int {\left[ {\dfrac{{a{e^{ax}}\sin \left( {bx} \right)}}{b}} \right]} dx\]
Taking the constant term outside of the integral, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\int {{e^{ax}}\sin \left( {bx} \right)\,} dx\]
Now, we do the integration of \[\int {{e^{ax}}\sin \left( {bx} \right)\,} \] using the integration by parts method again. So, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\left[ {{e^{ax}}\int {\sin \left( {bx} \right)dx} - \int {\left[ {\dfrac{d}{{dx}}\left( {{e^{ax}}} \right) \times \int {\sin \left( {bx} \right)dx} } \right]} dx} \right]\]
Now, we know that the integral of $\sin x$ with respect to x is $ - \cos x$ and derivative of \[\left( {{e^{ax}}} \right)\] with respect to x is \[a{e^{ax}}\] using the chain rule of differentiation. Hence, substituting the values of the known derivatives and integral, we get the value of original integral as:
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\left[ {{e^{ax}}\left( {\dfrac{{ - \cos \left( {bx} \right)}}{b}} \right) - \int {\left[ {a{e^{ax}} \times \left( {\dfrac{{ - \cos \left( {bx} \right)}}{b}} \right)} \right]} dx} \right]\]
Simplifying the integral, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\left[ {{e^{ax}}\left( {\dfrac{{ - \cos \left( {bx} \right)}}{b}} \right) + \int {\dfrac{a}{b}{e^{ax}}\cos \left( {bx} \right)} dx} \right]\]
Taking constants out of the integral, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\left[ {\dfrac{{ - {e^{ax}}\cos \left( {bx} \right)}}{b} + \dfrac{a}{b}\int {{e^{ax}}\cos \left( {bx} \right)} dx} \right]\]
Opening brackets and substituting the integral \[\int {{e^{ax}}\cos \left( {bx} \right)} dx\] as $I$, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) + \dfrac{a}{{{b^2}}}{e^{ax}}\cos \left( {bx} \right) - \dfrac{{{a^2}}}{{{b^2}}}\int {{e^{ax}}\cos \left( {bx} \right)} dx\] \[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) + \dfrac{a}{{{b^2}}}{e^{ax}}\cos \left( {bx} \right) - \dfrac{{{a^2}}}{{{b^2}}}I\]
Now, we have to find the value of integral I from the equation. So, we get,
\[ \Rightarrow I + \dfrac{{{a^2}}}{{{b^2}}}I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) + \dfrac{a}{{{b^2}}}{e^{ax}}\cos \left( {bx} \right)\]
\[ \Rightarrow \left( {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \right)I = \dfrac{1}{b}{e^{ax}}\sin \left( {bx} \right) + \dfrac{a}{{{b^2}}}{e^{ax}}\cos \left( {bx} \right)\]
\[ \Rightarrow \left( {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \right)I = \dfrac{a}{{{b^2}}}{e^{ax}}\left[ {\dfrac{b}{a}\sin \left( {bx} \right) + \cos \left( {bx} \right)} \right]\]
Cross multiplying the terms of the equation, we get,
\[\therefore I = \left( {\dfrac{a}{{{b^2} + {a^2}}}} \right)\left( {{e^{ax}}} \right)\left[ {\dfrac{b}{a}\sin \left( {bx} \right) + \cos \left( {bx} \right)} \right] + C\], where $C$ is any arbitrary constant.
So, the value of integral \[\int {{e^{ax}}\cos \left( {bx} \right)\,dx} \] is \[\left( {\dfrac{a}{{{b^2} + {a^2}}}} \right)\left( {{e^{ax}}} \right)\left[ {\dfrac{b}{a}\sin \left( {bx} \right) + \cos \left( {bx} \right)} \right] + C\], where $C$ is any arbitrary constant.
Note:Integration by parts method can be used to solve integrals of various complex functions involving the product of functions within itself easily. In the given question, integration by parts method has been used twice to make the process much easier and organized. We may have to apply the integration by parts method multiple times in order to reach the final answer in some questions. One must know the integral and derivatives of some basic functions like exponential function to get to deal with such questions.
Complete step by step answer:
Consider $I = \int {{e^{ax}}\cos \left( {bx} \right)\,dx} $
In integration by parts method, we integrate a function which is a product of two functions using a formula:
$\int {f\left( x \right)g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]dx} } } $
Hence, using integration by parts method and considering ${e^{ax}}$ as first function and $\cos \left( {bx} \right)$ as second function, we get
\[ \Rightarrow I = \left[ {{e^{ax}}\int {\cos \left( {bx} \right)dx} } \right] - \int {\left[ {\dfrac{d}{{dx}}\left( {{e^{ax}}} \right) \times \int {\cos \left( {bx} \right)dx} } \right]} dx\]
Now, we know that the derivative of \[\left( {{e^{ax}}} \right)\] with respect to x is \[a{e^{ax}}\] using the chain rule of differentiation. Also, we know that the integral of $\cos \left( {bx} \right)$ with respect to x is $\dfrac{{\sin \left( {bx} \right)}}{b}$.
\[ \Rightarrow I = \left[ {{e^{ax}} \times \dfrac{{\sin \left( {bx} \right)}}{b}} \right] - \int {\left[ {a{e^{ax}} \times \dfrac{{\sin \left( {bx} \right)}}{b}} \right]} dx\]
Simplifying the expression, we get,
\[ \Rightarrow I = \left[ {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right] - \int {\left[ {\dfrac{{a{e^{ax}}\sin \left( {bx} \right)}}{b}} \right]} dx\]
Taking the constant term outside of the integral, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\int {{e^{ax}}\sin \left( {bx} \right)\,} dx\]
Now, we do the integration of \[\int {{e^{ax}}\sin \left( {bx} \right)\,} \] using the integration by parts method again. So, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\left[ {{e^{ax}}\int {\sin \left( {bx} \right)dx} - \int {\left[ {\dfrac{d}{{dx}}\left( {{e^{ax}}} \right) \times \int {\sin \left( {bx} \right)dx} } \right]} dx} \right]\]
Now, we know that the integral of $\sin x$ with respect to x is $ - \cos x$ and derivative of \[\left( {{e^{ax}}} \right)\] with respect to x is \[a{e^{ax}}\] using the chain rule of differentiation. Hence, substituting the values of the known derivatives and integral, we get the value of original integral as:
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\left[ {{e^{ax}}\left( {\dfrac{{ - \cos \left( {bx} \right)}}{b}} \right) - \int {\left[ {a{e^{ax}} \times \left( {\dfrac{{ - \cos \left( {bx} \right)}}{b}} \right)} \right]} dx} \right]\]
Simplifying the integral, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\left[ {{e^{ax}}\left( {\dfrac{{ - \cos \left( {bx} \right)}}{b}} \right) + \int {\dfrac{a}{b}{e^{ax}}\cos \left( {bx} \right)} dx} \right]\]
Taking constants out of the integral, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) - \dfrac{a}{b}\left[ {\dfrac{{ - {e^{ax}}\cos \left( {bx} \right)}}{b} + \dfrac{a}{b}\int {{e^{ax}}\cos \left( {bx} \right)} dx} \right]\]
Opening brackets and substituting the integral \[\int {{e^{ax}}\cos \left( {bx} \right)} dx\] as $I$, we get,
\[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) + \dfrac{a}{{{b^2}}}{e^{ax}}\cos \left( {bx} \right) - \dfrac{{{a^2}}}{{{b^2}}}\int {{e^{ax}}\cos \left( {bx} \right)} dx\] \[ \Rightarrow I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) + \dfrac{a}{{{b^2}}}{e^{ax}}\cos \left( {bx} \right) - \dfrac{{{a^2}}}{{{b^2}}}I\]
Now, we have to find the value of integral I from the equation. So, we get,
\[ \Rightarrow I + \dfrac{{{a^2}}}{{{b^2}}}I = \left( {\dfrac{{{e^{ax}}\sin \left( {bx} \right)}}{b}} \right) + \dfrac{a}{{{b^2}}}{e^{ax}}\cos \left( {bx} \right)\]
\[ \Rightarrow \left( {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \right)I = \dfrac{1}{b}{e^{ax}}\sin \left( {bx} \right) + \dfrac{a}{{{b^2}}}{e^{ax}}\cos \left( {bx} \right)\]
\[ \Rightarrow \left( {\dfrac{{{b^2} + {a^2}}}{{{b^2}}}} \right)I = \dfrac{a}{{{b^2}}}{e^{ax}}\left[ {\dfrac{b}{a}\sin \left( {bx} \right) + \cos \left( {bx} \right)} \right]\]
Cross multiplying the terms of the equation, we get,
\[\therefore I = \left( {\dfrac{a}{{{b^2} + {a^2}}}} \right)\left( {{e^{ax}}} \right)\left[ {\dfrac{b}{a}\sin \left( {bx} \right) + \cos \left( {bx} \right)} \right] + C\], where $C$ is any arbitrary constant.
So, the value of integral \[\int {{e^{ax}}\cos \left( {bx} \right)\,dx} \] is \[\left( {\dfrac{a}{{{b^2} + {a^2}}}} \right)\left( {{e^{ax}}} \right)\left[ {\dfrac{b}{a}\sin \left( {bx} \right) + \cos \left( {bx} \right)} \right] + C\], where $C$ is any arbitrary constant.
Note:Integration by parts method can be used to solve integrals of various complex functions involving the product of functions within itself easily. In the given question, integration by parts method has been used twice to make the process much easier and organized. We may have to apply the integration by parts method multiple times in order to reach the final answer in some questions. One must know the integral and derivatives of some basic functions like exponential function to get to deal with such questions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

