
Using the identity prove: .
Answer
492.9k+ views
Hint: To prove the equation we will use the identity of . We can also write the equation as . Put this identity equation in the LHS of the equation , simplify the equation, use multiplication of polynomials. Use the identity of to simplify it further. Arrange the terms to obtain the RHS of the equation .
Complete step-by-step answer:
Here we have to prove the given equation, which is .
We will use the identity to prove the LHS of the equation equals the RHS of the equation.
As we know the equation , we can write the equation as also. We will use this identity equation to prove.
Now taking Left hand side of the equation,
Now using the identity , we can write as .
Putting this in the above equation, ,
Arranging the terms of equation,
Now again using the same identity for , we can write the equation as .
Putting the equation of in our LHS equation,
So,
Use multiplication of two polynomials to simplify the equation. For multiplication of two polynomials, we multiply each monomial of one polynomial with its sign by each monomial of another polynomial with its sign.
So,
Taking common in last three terms above equation,
Now taking common in all terms of the equation,
So,
Now use another identity of . Put this in the above equation.
So, ,
Multiply the polynomials,
Arranging the terms,
So,
So, .
Hence it is proved that .
Note: Without using the identity we can also prove . For this method take first . After this use multiplication of polynomials to simplify the equation.
So,
Simplifying the equation,
Arranging the terms,
Simplifying,
So,
So, .
Hence it is proved that
Complete step-by-step answer:
Here we have to prove the given equation, which is
We will use the identity to prove the LHS of the equation equals the RHS of the equation.
As we know the equation
Now taking Left hand side of the equation,
Now using the identity
Putting this in the above equation,
Arranging the terms of equation,
Now again using the same identity for
Putting the equation of
So,
Use multiplication of two polynomials to simplify the equation. For multiplication of two polynomials, we multiply each monomial of one polynomial with its sign by each monomial of another polynomial with its sign.
So,
Taking
Now taking
So,
Now use another identity of
So,
Multiply the polynomials,
Arranging the terms,
So,
So,
Hence it is proved that
Note: Without using the identity we can also prove
So,
Simplifying the equation,
Arranging the terms,
Simplifying,
So,
So,
Hence it is proved that
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Find the largest number which divides 615 and 963 leaving class 9 maths CBSE

In a morning walk three persons step off together -class-9-maths-CBSE

When did South Africa become independent A 16 April class 9 social science CBSE

The president of the constituent assembly was A Dr class 9 social science CBSE

The French Revolution popularised many symbols Each class 9 social science CBSE

Why did Gujarat witness a sunrise 2 hours after Arunachal Pradesh?
