
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant \[\left| \left. \begin{matrix}
-2a & a+b & a+c \\
b+a & -2b & b+c \\
c+a & c+b & -2c \\
\end{matrix} \right| \right.\] . The other factor in the value of the determinant
Answer
543.6k+ views
Hint: To solve this problem first we have to make the necessary assumption to simplify the given terms and then we have to apply some of the row and column operations to solve the determinant. Then the simplified determinant will leave us with the required answer.
Complete step-by-step solution:
Let \[\Delta =\left| \left. \begin{matrix}
-2a & a+b & a+c \\
b+a & -2b & b+c \\
c+a & c+b & -2c \\
\end{matrix} \right| \right.\]
And let $a + b = 2C, b + c = 2A, c + a = 2B$
\[\Rightarrow \] $a + b + b + c + c + a = 2A + 2B + 2C$
\[\Rightarrow \] \[2\left( a+b+c \right)\] = \[2\left( A+B+C \right)\]
\[\Rightarrow \] \[\left( a+b+c \right)\] = \[\left( A+B+C \right)\]
Also we have,
\[a=\left( a+b+c \right)-\left( b+c \right)\] = \[\left( A+B+C \right)-2A\] = \[B+C-A\]
Similarly we get,
\[b=C+A-B\]
\[c=A+B-C\]
Now on substitution in \[\Delta \] , we get
\[\Delta =\left| \left. \begin{matrix}
2A-2B-2C & 2C & 2B \\
2C & 2B-2C-2A & 2A \\
2B & 2A & 2C-2A-2B \\
\end{matrix} \right| \right.\]
We can take 2 common from \[{{R}_{1}},{{R}_{2}},{{R}_{3}}\]
\[\Rightarrow 8\times \left| \left. \begin{matrix}
A-B-C & C & B \\
C & B-C-A & A \\
B & A & C-A-B \\
\end{matrix} \right| \right.\]
On applying \[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}},{{C}_{2}}\to {{C}_{2}}+{{C}_{3}}\] , we get
\[\Rightarrow 8\times \left| \left. \begin{matrix}
A-B & C+B & B \\
B-A & B-C & A \\
B+A & C-B & C-A-B \\
\end{matrix} \right| \right.\]
On applying \[{{R}_{2}}\to {{R}_{2}}+{{R}_{1}},{{R}_{3}}\to {{R}_{3}}+{{R}_{2}}\] , we get
\[\Rightarrow 8\times \left| \left. \begin{matrix}
A-B & B+C & B \\
0 & 2B & A+B \\
2B & 0 & C-B \\
\end{matrix} \right| \right.\]
Now let us expand along \[{{C}_{1}}\]
\[\Rightarrow 8\times \left\{ \left( A-B \right)\left| \left. \begin{matrix}
2B & A+B \\
0 & C-B \\
\end{matrix} \right|+\left( 2B \right)\left| \left. \begin{matrix}
C+B & B \\
2B & A+B \\
\end{matrix} \right| \right. \right. \right\}\]
\[\Rightarrow 16B\left\{ \left( A-B \right)\left( C-B \right)+\left( C+B \right)\left( A+B \right)-2{{B}^{2}} \right\}\]
Now let us simplify this to get as below,
\[\Rightarrow 32ABC\]
We should re substitute the values of A, B and C,
\[\Rightarrow 32\left( \dfrac{b+c}{2} \right)\left( \dfrac{c+a}{2} \right)\left( \dfrac{a+b}{2} \right)\]
\[\Rightarrow 4\left( b+c \right)\left( c+a \right)\left( a+b \right)\]
Hence 4 is the other factor of the determinant.
Note: Students should be aware of the row and column operation to be applied to get the simplified form of the determinant. We can also solve this determinate only by basic expansion of the determinant but sometimes students may get confused and miss the terms while expanding.
Complete step-by-step solution:
Let \[\Delta =\left| \left. \begin{matrix}
-2a & a+b & a+c \\
b+a & -2b & b+c \\
c+a & c+b & -2c \\
\end{matrix} \right| \right.\]
And let $a + b = 2C, b + c = 2A, c + a = 2B$
\[\Rightarrow \] $a + b + b + c + c + a = 2A + 2B + 2C$
\[\Rightarrow \] \[2\left( a+b+c \right)\] = \[2\left( A+B+C \right)\]
\[\Rightarrow \] \[\left( a+b+c \right)\] = \[\left( A+B+C \right)\]
Also we have,
\[a=\left( a+b+c \right)-\left( b+c \right)\] = \[\left( A+B+C \right)-2A\] = \[B+C-A\]
Similarly we get,
\[b=C+A-B\]
\[c=A+B-C\]
Now on substitution in \[\Delta \] , we get
\[\Delta =\left| \left. \begin{matrix}
2A-2B-2C & 2C & 2B \\
2C & 2B-2C-2A & 2A \\
2B & 2A & 2C-2A-2B \\
\end{matrix} \right| \right.\]
We can take 2 common from \[{{R}_{1}},{{R}_{2}},{{R}_{3}}\]
\[\Rightarrow 8\times \left| \left. \begin{matrix}
A-B-C & C & B \\
C & B-C-A & A \\
B & A & C-A-B \\
\end{matrix} \right| \right.\]
On applying \[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}},{{C}_{2}}\to {{C}_{2}}+{{C}_{3}}\] , we get
\[\Rightarrow 8\times \left| \left. \begin{matrix}
A-B & C+B & B \\
B-A & B-C & A \\
B+A & C-B & C-A-B \\
\end{matrix} \right| \right.\]
On applying \[{{R}_{2}}\to {{R}_{2}}+{{R}_{1}},{{R}_{3}}\to {{R}_{3}}+{{R}_{2}}\] , we get
\[\Rightarrow 8\times \left| \left. \begin{matrix}
A-B & B+C & B \\
0 & 2B & A+B \\
2B & 0 & C-B \\
\end{matrix} \right| \right.\]
Now let us expand along \[{{C}_{1}}\]
\[\Rightarrow 8\times \left\{ \left( A-B \right)\left| \left. \begin{matrix}
2B & A+B \\
0 & C-B \\
\end{matrix} \right|+\left( 2B \right)\left| \left. \begin{matrix}
C+B & B \\
2B & A+B \\
\end{matrix} \right| \right. \right. \right\}\]
\[\Rightarrow 16B\left\{ \left( A-B \right)\left( C-B \right)+\left( C+B \right)\left( A+B \right)-2{{B}^{2}} \right\}\]
Now let us simplify this to get as below,
\[\Rightarrow 32ABC\]
We should re substitute the values of A, B and C,
\[\Rightarrow 32\left( \dfrac{b+c}{2} \right)\left( \dfrac{c+a}{2} \right)\left( \dfrac{a+b}{2} \right)\]
\[\Rightarrow 4\left( b+c \right)\left( c+a \right)\left( a+b \right)\]
Hence 4 is the other factor of the determinant.
Note: Students should be aware of the row and column operation to be applied to get the simplified form of the determinant. We can also solve this determinate only by basic expansion of the determinant but sometimes students may get confused and miss the terms while expanding.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

