Answer
Verified
492k+ views
Hint: Use the fact that if l = LCM (a,b) and g = HCF (a,b) then we have ab = lg i.e. $\text{HCF}\times \text{LCM=Product of two numbers}$.
Complete step-by-step answer:
First before using the formula we argue why the above formula is correct.
We know that if l = LCM (a,b) then any number m such that $a|m$ and $b|m\Rightarrow l\le m$.
Now we know that $g|a$ and $g|b$ so $\dfrac{a}{g},\dfrac{b}{g}\in \mathbb{N}$.
Take $m=\dfrac{ab}{g}$
$\dfrac{m}{a}=\dfrac{b}{g}\in \mathbb{N}$ i.e. $a|m,\dfrac{m}{b}=\dfrac{a}{g}\in \mathbb{N}$ i.e. $b|m$
Hence, we have $l\le m$ i.e. $l\le \dfrac{ab}{g}\Rightarrow gl\le ab\text{ (i)}$
Also we know that if g = GCD (a,b) , then any number n such that $n|a$ and $n|b\Rightarrow g\ge n$.
Take $n=\dfrac{ab}{l}$.
Since $a|l$ and $b|l$ we have $\dfrac{l}{a},\dfrac{l}{b}\in \mathbb{N}$.
Now $\dfrac{a}{n}=\dfrac{a}{\dfrac{ab}{l}}=\dfrac{l}{b}\in \mathbb{N}$ i.e. $n|a$.
Similarly, $n|b$. Hence we have $n|a$ and $n|b$.
Hence, we have $g\ge n$ i.e. $g\ge \dfrac{ab}{l}\Rightarrow gl\ge ab\text{ (ii)}$
From equation (i) and (ii) we get
$\begin{align}
& gl\ge ab\text{ and }gl\le ab \\
& \Rightarrow gl=ab \\
\end{align}$
Hence, we have $HCF(a,b)\times LCM(a,b)=ab$.
Put a = 105, b = 120, HCF (a,b) = 15, we get
$15\times LCM(a,b)=120\times 105$
Dividing both sides by 15, we get
$\begin{align}
& \Rightarrow \dfrac{15LCM(a,b)}{15}=\dfrac{120\times 105}{15} \\
& \Rightarrow LCM(a,b)=840 \\
\end{align}$
Hence LCM (105,120) = 840
Option [c] is correct.
Note:
[1] GCD is the largest of all the common divisors. Hence if m is a common divisor of a and b then $GCD\ge m$. Mathematically we write it as “that if g = GCD (a,b) , then any number n such that $n|a$ and $n|b\Rightarrow g\ge n$.” With a little bit more effort, it can be shown that $n|g$.
[2] LCM is the smallest of all common multiples. Hence if m is a common multiple of a and b then $LCM\le m$. Mathematically we write it as “if l = LCM (a,b), then any number m such that $a|m$ and $b|m\Rightarrow l\le m$.” With a little bit more effort it can be shown that $l|m$.
Complete step-by-step answer:
First before using the formula we argue why the above formula is correct.
We know that if l = LCM (a,b) then any number m such that $a|m$ and $b|m\Rightarrow l\le m$.
Now we know that $g|a$ and $g|b$ so $\dfrac{a}{g},\dfrac{b}{g}\in \mathbb{N}$.
Take $m=\dfrac{ab}{g}$
$\dfrac{m}{a}=\dfrac{b}{g}\in \mathbb{N}$ i.e. $a|m,\dfrac{m}{b}=\dfrac{a}{g}\in \mathbb{N}$ i.e. $b|m$
Hence, we have $l\le m$ i.e. $l\le \dfrac{ab}{g}\Rightarrow gl\le ab\text{ (i)}$
Also we know that if g = GCD (a,b) , then any number n such that $n|a$ and $n|b\Rightarrow g\ge n$.
Take $n=\dfrac{ab}{l}$.
Since $a|l$ and $b|l$ we have $\dfrac{l}{a},\dfrac{l}{b}\in \mathbb{N}$.
Now $\dfrac{a}{n}=\dfrac{a}{\dfrac{ab}{l}}=\dfrac{l}{b}\in \mathbb{N}$ i.e. $n|a$.
Similarly, $n|b$. Hence we have $n|a$ and $n|b$.
Hence, we have $g\ge n$ i.e. $g\ge \dfrac{ab}{l}\Rightarrow gl\ge ab\text{ (ii)}$
From equation (i) and (ii) we get
$\begin{align}
& gl\ge ab\text{ and }gl\le ab \\
& \Rightarrow gl=ab \\
\end{align}$
Hence, we have $HCF(a,b)\times LCM(a,b)=ab$.
Put a = 105, b = 120, HCF (a,b) = 15, we get
$15\times LCM(a,b)=120\times 105$
Dividing both sides by 15, we get
$\begin{align}
& \Rightarrow \dfrac{15LCM(a,b)}{15}=\dfrac{120\times 105}{15} \\
& \Rightarrow LCM(a,b)=840 \\
\end{align}$
Hence LCM (105,120) = 840
Option [c] is correct.
Note:
[1] GCD is the largest of all the common divisors. Hence if m is a common divisor of a and b then $GCD\ge m$. Mathematically we write it as “that if g = GCD (a,b) , then any number n such that $n|a$ and $n|b\Rightarrow g\ge n$.” With a little bit more effort, it can be shown that $n|g$.
[2] LCM is the smallest of all common multiples. Hence if m is a common multiple of a and b then $LCM\le m$. Mathematically we write it as “if l = LCM (a,b), then any number m such that $a|m$ and $b|m\Rightarrow l\le m$.” With a little bit more effort it can be shown that $l|m$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE