
Using the elementary operations, find the inverse of the following matrix
\[\left( {\begin{array}{*{20}{c}}
{ - 1}&1&2 \\
1&2&3 \\
3&1&1
\end{array}} \right)\]
Answer
585k+ views
Hint: Let the given matrix be A. The given matrix A can also be expressed as $A = AI$, where $I$ is the identity matrix. So the inverse of $A$ can be expressed as $I = {A^{ - 1}}A$ Apply the necessary column and row matrix. Now using the necessary row and column transformation makes the LHS matrix an identity matrix to find the ${A^{ - 1}}$ .
Complete step by step answer:
Now we can express the given matrix A as $A=AI$ , where $I$ represents the identity matrix.
So now we can express the matrix as $I = {A^{ - 1}}A$ for doing the necessary elementary transformations.
The elementary transformations should be done in such a way that it should make the LHS an identity matrix through step by step operations or procedures.
Now expressing the matrix $A$ as $A=IA$ we get
\[\left( \begin{matrix}
-1 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)A\] \[\]
Applying ${{R}_{1}}\rightleftharpoons {{R}_{2}}$ , we get
\[\left( \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)A\]
Now applying ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}$ , the equation becomes
\[\left( \begin{matrix}
1 & 2 & 3 \\
0 & 3 & 5 \\
0 & -5 & -8 \\
\end{matrix} \right)=\left( \begin{matrix}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & -3 & 1 \\
\end{matrix} \right)A\]
Now applying ${{R}_{1}}\to {{R}_{1}}-\dfrac{2}{3}{{R}_{2}}$ , the equation becomes
\[\left( \begin{matrix}
1 & 0 & \dfrac{-1}{3} \\
0 & 3 & 5 \\
0 & -5 & -8 \\
\end{matrix} \right)=\left( \begin{matrix}
\dfrac{-2}{3} & \dfrac{1}{3} & 0 \\
1 & 1 & 0 \\
0 & -3 & 1 \\
\end{matrix} \right)A\]
Apply ${{R}_{2}}\to \dfrac{1}{3}{{R}_{2}}$ to get the equation as
\[\left( \begin{matrix}
1 & 0 & \dfrac{-1}{3} \\
0 & 1 & \dfrac{5}{3} \\
0 & -5 & -8 \\
\end{matrix} \right)=\left( \begin{matrix}
\dfrac{-2}{3} & \dfrac{1}{3} & 0 \\
\dfrac{1}{3} & \dfrac{1}{3} & 0 \\
0 & -3 & 1 \\
\end{matrix} \right)A\]
Apply ${{R}_{3}}\to {{R}_{3}}+5{{R}_{2}}$.
\[\left( \begin{matrix}
1 & 0 & \dfrac{-1}{3} \\
0 & 1 & \dfrac{5}{3} \\
0 & 0 & \dfrac{1}{3} \\
\end{matrix} \right)=\left( \begin{matrix}
\dfrac{-2}{3} & \dfrac{1}{3} & 0 \\
\dfrac{1}{3} & \dfrac{1}{3} & 0 \\
\dfrac{5}{3} & \dfrac{-4}{3} & 1 \\
\end{matrix} \right)A\]
Apply ${{R}_{1}}\to {{R}_{1}}+{{R}_{3}}$ and ${{R}_{2}}\to {{R}_{2}}-5{{R}_{3}}$ , the equation becomes
\[\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \dfrac{1}{3} \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 1 & 1 \\
-8 & 7 & -5 \\
\dfrac{5}{3} & \dfrac{-4}{3} & 1 \\
\end{matrix} \right)A\]
Applying the final elementary transformation ${{R}_{3}}\to 3{{R}_{3}}$ to make the equation as
\[\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & -1 & 1 \\
-8 & 7 & 5 \\
5 & -4 & 3 \\
\end{matrix} \right)A\]
Here the LHS has become an identity matrix, so we can stop with the elementary transformation procedures.
Now taking the RHS A to the LHS, we get the ${{A}^{-1}}$ .
Hence ${{A}^{-1}}=\left( \begin{matrix}
1 & -1 & 1 \\
-8 & 7 & 5 \\
5 & -4 & 3 \\
\end{matrix} \right)$
Thus the inverse of the given matrix is $\left( \begin{matrix}
1 & -1 & 1 \\
-8 & 7 & 5 \\
5 & -4 & 3 \\
\end{matrix} \right)$
Note:
The elementary transformation should be done in such a way that the LHS side has to be made an identity matrix. Be careful while doing the mathematical operations in the elementary transformation as the student can usually commit a mistake in performing them. One silly mistake in the elementary transformation can make the entire solution wrong.
Complete step by step answer:
Now we can express the given matrix A as $A=AI$ , where $I$ represents the identity matrix.
So now we can express the matrix as $I = {A^{ - 1}}A$ for doing the necessary elementary transformations.
The elementary transformations should be done in such a way that it should make the LHS an identity matrix through step by step operations or procedures.
Now expressing the matrix $A$ as $A=IA$ we get
\[\left( \begin{matrix}
-1 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)A\] \[\]
Applying ${{R}_{1}}\rightleftharpoons {{R}_{2}}$ , we get
\[\left( \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
3 & 1 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)A\]
Now applying ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}$ , the equation becomes
\[\left( \begin{matrix}
1 & 2 & 3 \\
0 & 3 & 5 \\
0 & -5 & -8 \\
\end{matrix} \right)=\left( \begin{matrix}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & -3 & 1 \\
\end{matrix} \right)A\]
Now applying ${{R}_{1}}\to {{R}_{1}}-\dfrac{2}{3}{{R}_{2}}$ , the equation becomes
\[\left( \begin{matrix}
1 & 0 & \dfrac{-1}{3} \\
0 & 3 & 5 \\
0 & -5 & -8 \\
\end{matrix} \right)=\left( \begin{matrix}
\dfrac{-2}{3} & \dfrac{1}{3} & 0 \\
1 & 1 & 0 \\
0 & -3 & 1 \\
\end{matrix} \right)A\]
Apply ${{R}_{2}}\to \dfrac{1}{3}{{R}_{2}}$ to get the equation as
\[\left( \begin{matrix}
1 & 0 & \dfrac{-1}{3} \\
0 & 1 & \dfrac{5}{3} \\
0 & -5 & -8 \\
\end{matrix} \right)=\left( \begin{matrix}
\dfrac{-2}{3} & \dfrac{1}{3} & 0 \\
\dfrac{1}{3} & \dfrac{1}{3} & 0 \\
0 & -3 & 1 \\
\end{matrix} \right)A\]
Apply ${{R}_{3}}\to {{R}_{3}}+5{{R}_{2}}$.
\[\left( \begin{matrix}
1 & 0 & \dfrac{-1}{3} \\
0 & 1 & \dfrac{5}{3} \\
0 & 0 & \dfrac{1}{3} \\
\end{matrix} \right)=\left( \begin{matrix}
\dfrac{-2}{3} & \dfrac{1}{3} & 0 \\
\dfrac{1}{3} & \dfrac{1}{3} & 0 \\
\dfrac{5}{3} & \dfrac{-4}{3} & 1 \\
\end{matrix} \right)A\]
Apply ${{R}_{1}}\to {{R}_{1}}+{{R}_{3}}$ and ${{R}_{2}}\to {{R}_{2}}-5{{R}_{3}}$ , the equation becomes
\[\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \dfrac{1}{3} \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 1 & 1 \\
-8 & 7 & -5 \\
\dfrac{5}{3} & \dfrac{-4}{3} & 1 \\
\end{matrix} \right)A\]
Applying the final elementary transformation ${{R}_{3}}\to 3{{R}_{3}}$ to make the equation as
\[\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & -1 & 1 \\
-8 & 7 & 5 \\
5 & -4 & 3 \\
\end{matrix} \right)A\]
Here the LHS has become an identity matrix, so we can stop with the elementary transformation procedures.
Now taking the RHS A to the LHS, we get the ${{A}^{-1}}$ .
Hence ${{A}^{-1}}=\left( \begin{matrix}
1 & -1 & 1 \\
-8 & 7 & 5 \\
5 & -4 & 3 \\
\end{matrix} \right)$
Thus the inverse of the given matrix is $\left( \begin{matrix}
1 & -1 & 1 \\
-8 & 7 & 5 \\
5 & -4 & 3 \\
\end{matrix} \right)$
Note:
The elementary transformation should be done in such a way that the LHS side has to be made an identity matrix. Be careful while doing the mathematical operations in the elementary transformation as the student can usually commit a mistake in performing them. One silly mistake in the elementary transformation can make the entire solution wrong.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

