
Using the Binomial Theorem, evaluate \[{{\left( 101 \right)}^{4}}\]
Answer
585.3k+ views
Hint: In the question we will first separate the numbers (in form of sum) and keep one of the numbers as \[1\] . Now the formula we will use to find the value of the question is:
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{1}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n}}{{b}^{n}}\]
where \[a\] and \[b\] are the sum of the value of the numbers given in the question and one of them is \[1\] for easier calculation while \[n\] is the power upto which the binomial is evaluated.
Complete step-by-step answer:
Simplifying the values of the binomial theorem by placing the value of \[n=4\]
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{1}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n}}{{b}^{n}}\]
\[{{\left( a+b \right)}^{n}}={}^{4}{{C}_{0}}{{a}^{4}}+{}^{4}{{C}_{1}}{{a}^{4-1}}{{b}^{1}}+{}^{4}{{C}_{2}}{{a}^{4-2}}{{b}^{2}}+{}^{4}{{C}_{3}}{{a}^{4-3}}{{b}^{3}}+{}^{4}{{C}_{4}}{{a}^{4-4}}{{b}^{4}}\]
Placing the values of \[a,b\] in the formula as \[(a+b)=(100+1)\] respectively, we get:
\[\Rightarrow {}^{4}{{C}_{0}}{{a}^{4}}+{}^{4}{{C}_{1}}{{a}^{3}}{{b}^{1}}+{}^{4}{{C}_{2}}{{a}^{2}}{{b}^{2}}+{}^{4}{{C}_{3}}{{a}^{1}}{{b}^{3}}+{}^{4}{{C}_{4}}{{a}^{0}}{{b}^{4}}\]
\[{{\left( 100+1 \right)}^{n}}={}^{4}{{C}_{0}}{{\left( 100 \right)}^{4}}+{}^{4}{{C}_{1}}{{\left( 100 \right)}^{3}}{{1}^{1}}+{}^{4}{{C}_{2}}{{\left( 100 \right)}^{2}}{{1}^{2}}+{}^{4}{{C}_{3}}{{\left( 100 \right)}^{1}}{{1}^{3}}+{}^{4}{{C}_{4}}{{\left( 100 \right)}^{0}}{{1}^{4}}\]
Calculating the R.H.S of the binomial theorem and solving the combination of all the five combinations \[{}^{4}{{C}_{0}},{}^{4}{{C}_{1}},{}^{4}{{C}_{2}},{}^{4}{{C}_{3}},{}^{4}{{C}_{4}}\] we get the value as:
\[\Rightarrow 1{{\left( 100 \right)}^{4}}+\frac{4}{1}{{\left( 100 \right)}^{3}}{{1}^{1}}+\frac{4.3}{2.1}{{\left( 100 \right)}^{2}}{{1}^{2}}+\frac{4.3.2}{3.2.1}{{\left( 100 \right)}^{1}}{{1}^{3}}+{{\left( 100 \right)}^{0}}{{1}^{4}}\]
\[\Rightarrow {{\left( 100 \right)}^{4}}+4{{\left( 100 \right)}^{3}}+6{{\left( 100 \right)}^{2}}+4{{\left( 100 \right)}^{1}}+{{\left( 100 \right)}^{0}}\]
\[\Rightarrow 100000000+4000000+60000+400+1\]
\[\Rightarrow 104060401\]
Hence, the value of \[{{\left( 101 \right)}^{4}}\] using binomial theorem is \[104060401\].
Note: Students may go wrong while solving the powers and the combination, remember the first part of the combination will always be \[{{a}^{n}}\] and last part be \[{{b}^{n}}\] and the power of \[a\] will decrease and power of \[b\] will increase.
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{1}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n}}{{b}^{n}}\]
where \[a\] and \[b\] are the sum of the value of the numbers given in the question and one of them is \[1\] for easier calculation while \[n\] is the power upto which the binomial is evaluated.
Complete step-by-step answer:
Simplifying the values of the binomial theorem by placing the value of \[n=4\]
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{1}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n}}{{b}^{n}}\]
\[{{\left( a+b \right)}^{n}}={}^{4}{{C}_{0}}{{a}^{4}}+{}^{4}{{C}_{1}}{{a}^{4-1}}{{b}^{1}}+{}^{4}{{C}_{2}}{{a}^{4-2}}{{b}^{2}}+{}^{4}{{C}_{3}}{{a}^{4-3}}{{b}^{3}}+{}^{4}{{C}_{4}}{{a}^{4-4}}{{b}^{4}}\]
Placing the values of \[a,b\] in the formula as \[(a+b)=(100+1)\] respectively, we get:
\[\Rightarrow {}^{4}{{C}_{0}}{{a}^{4}}+{}^{4}{{C}_{1}}{{a}^{3}}{{b}^{1}}+{}^{4}{{C}_{2}}{{a}^{2}}{{b}^{2}}+{}^{4}{{C}_{3}}{{a}^{1}}{{b}^{3}}+{}^{4}{{C}_{4}}{{a}^{0}}{{b}^{4}}\]
\[{{\left( 100+1 \right)}^{n}}={}^{4}{{C}_{0}}{{\left( 100 \right)}^{4}}+{}^{4}{{C}_{1}}{{\left( 100 \right)}^{3}}{{1}^{1}}+{}^{4}{{C}_{2}}{{\left( 100 \right)}^{2}}{{1}^{2}}+{}^{4}{{C}_{3}}{{\left( 100 \right)}^{1}}{{1}^{3}}+{}^{4}{{C}_{4}}{{\left( 100 \right)}^{0}}{{1}^{4}}\]
Calculating the R.H.S of the binomial theorem and solving the combination of all the five combinations \[{}^{4}{{C}_{0}},{}^{4}{{C}_{1}},{}^{4}{{C}_{2}},{}^{4}{{C}_{3}},{}^{4}{{C}_{4}}\] we get the value as:
\[\Rightarrow 1{{\left( 100 \right)}^{4}}+\frac{4}{1}{{\left( 100 \right)}^{3}}{{1}^{1}}+\frac{4.3}{2.1}{{\left( 100 \right)}^{2}}{{1}^{2}}+\frac{4.3.2}{3.2.1}{{\left( 100 \right)}^{1}}{{1}^{3}}+{{\left( 100 \right)}^{0}}{{1}^{4}}\]
\[\Rightarrow {{\left( 100 \right)}^{4}}+4{{\left( 100 \right)}^{3}}+6{{\left( 100 \right)}^{2}}+4{{\left( 100 \right)}^{1}}+{{\left( 100 \right)}^{0}}\]
\[\Rightarrow 100000000+4000000+60000+400+1\]
\[\Rightarrow 104060401\]
Hence, the value of \[{{\left( 101 \right)}^{4}}\] using binomial theorem is \[104060401\].
Note: Students may go wrong while solving the powers and the combination, remember the first part of the combination will always be \[{{a}^{n}}\] and last part be \[{{b}^{n}}\] and the power of \[a\] will decrease and power of \[b\] will increase.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

