
Using properties of determinant then show that
\[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right| = 0\]
Answer
576.9k+ views
Hint: Here we will use the matrix determinant formula which states that for a matrix with dimensions \[2 \times 2\] , the determinant will be defined as:
\[\left| {\text{A}} \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\]
Similarly, for a matrix with dimensions \[3 \times 3\] , the determinant will be defined as:
\[\left| {\text{A}} \right| = \left| {\begin{array}{*{20}{c}}
a&d&g \\
b&e&h \\
c&f&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&h \\
f&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&g \\
f&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&g \\
e&h
\end{array}} \right|\]
\[ \Rightarrow \left| {\text{A}} \right| = a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right)\]
\[ \Rightarrow \left| {\text{A}} \right| = aei - ahf - bdi + bgf + cdh - cge\]
The symbol for determinant is shown as \[\left| {\text{A}} \right|\] or \[\Delta {\text{A}}\].
Complete step-by-step answer:
Step 1: We need to prove that the determinant \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\] is equal to zero.
Let, \[\Delta = \left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\]
We can write the above matrix as below:
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&{\dfrac{{\log y}}{{\log x}}}&{\dfrac{{\log z}}{{\log x}}} \\
{\dfrac{{\log x}}{{\log y}}}&1&{\dfrac{{\log z}}{{\log y}}} \\
{\dfrac{{\log x}}{{\log z}}}&{\dfrac{{\log y}}{{\log z}}}&1
\end{array}} \right|\] …………………….. (1) \[\left( {\because {{\log }_n}m = \dfrac{{\log m}}{{\log n}}} \right)\]
Step 2: Writing \[1 = \dfrac{{\log x}}{{\log x}}\] in the first row, \[1 = \dfrac{{\log y}}{{\log y}}\] in the second row, and \[1 = \dfrac{{\log z}}{{\log z}}\] the last row in the expression (1).
Step 3: By substituting the values mentioned in step number 2, we get:
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
{\dfrac{{\log x}}{{\log x}}}&{\dfrac{{\log y}}{{\log x}}}&{\dfrac{{\log z}}{{\log x}}} \\
{\dfrac{{\log x}}{{\log y}}}&{\dfrac{{\log y}}{{\log y}}}&{\dfrac{{\log z}}{{\log y}}} \\
{\dfrac{{\log x}}{{\log z}}}&{\dfrac{{\log y}}{{\log z}}}&{\dfrac{{\log z}}{{\log z}}}
\end{array}} \right|\] ……………. (2)
In the above expression (2), by taking \[\log x\] common from the first row, \[\log y\] common from the second row, and \[\log z\] common from the last row, we get:
\[ \Rightarrow \Delta = \dfrac{1}{{\log x\log y\log z}}\left| {\begin{array}{*{20}{c}}
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z}
\end{array}} \right|\]
Step 4: By using the property of determinant of matrices that if any two or more rows of the matrix are equal then the determinant of that matrix will be equals to zero.
Now in the expression \[\dfrac{1}{{\log x\log y\log z}}\left| {\begin{array}{*{20}{c}}
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z}
\end{array}} \right|\] , the determinant will be equals to zero, so the final answer will be equals to as below:
\[ \Rightarrow \Delta = 0\]
Hence proved that \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right| = 0\].
Note: There are many properties of the determinant of the matrix but students’ needs to remember the important ones as shown below:
If all the elements of a row or column of any matrix are zero, then the determinant will always be equal to zero.
If all the elements of a row or column of a determinant are multiplied by any non-zero constant value, then the determinant will also be multiplied by the same constant value.
If all the elements of a row or column are proportional or we can say identical to the elements of another row or column, then the determinant will be equal to zero.
\[\left| {\text{A}} \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\]
Similarly, for a matrix with dimensions \[3 \times 3\] , the determinant will be defined as:
\[\left| {\text{A}} \right| = \left| {\begin{array}{*{20}{c}}
a&d&g \\
b&e&h \\
c&f&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&h \\
f&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&g \\
f&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&g \\
e&h
\end{array}} \right|\]
\[ \Rightarrow \left| {\text{A}} \right| = a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right)\]
\[ \Rightarrow \left| {\text{A}} \right| = aei - ahf - bdi + bgf + cdh - cge\]
The symbol for determinant is shown as \[\left| {\text{A}} \right|\] or \[\Delta {\text{A}}\].
Complete step-by-step answer:
Step 1: We need to prove that the determinant \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\] is equal to zero.
Let, \[\Delta = \left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\]
We can write the above matrix as below:
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&{\dfrac{{\log y}}{{\log x}}}&{\dfrac{{\log z}}{{\log x}}} \\
{\dfrac{{\log x}}{{\log y}}}&1&{\dfrac{{\log z}}{{\log y}}} \\
{\dfrac{{\log x}}{{\log z}}}&{\dfrac{{\log y}}{{\log z}}}&1
\end{array}} \right|\] …………………….. (1) \[\left( {\because {{\log }_n}m = \dfrac{{\log m}}{{\log n}}} \right)\]
Step 2: Writing \[1 = \dfrac{{\log x}}{{\log x}}\] in the first row, \[1 = \dfrac{{\log y}}{{\log y}}\] in the second row, and \[1 = \dfrac{{\log z}}{{\log z}}\] the last row in the expression (1).
Step 3: By substituting the values mentioned in step number 2, we get:
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
{\dfrac{{\log x}}{{\log x}}}&{\dfrac{{\log y}}{{\log x}}}&{\dfrac{{\log z}}{{\log x}}} \\
{\dfrac{{\log x}}{{\log y}}}&{\dfrac{{\log y}}{{\log y}}}&{\dfrac{{\log z}}{{\log y}}} \\
{\dfrac{{\log x}}{{\log z}}}&{\dfrac{{\log y}}{{\log z}}}&{\dfrac{{\log z}}{{\log z}}}
\end{array}} \right|\] ……………. (2)
In the above expression (2), by taking \[\log x\] common from the first row, \[\log y\] common from the second row, and \[\log z\] common from the last row, we get:
\[ \Rightarrow \Delta = \dfrac{1}{{\log x\log y\log z}}\left| {\begin{array}{*{20}{c}}
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z}
\end{array}} \right|\]
Step 4: By using the property of determinant of matrices that if any two or more rows of the matrix are equal then the determinant of that matrix will be equals to zero.
Now in the expression \[\dfrac{1}{{\log x\log y\log z}}\left| {\begin{array}{*{20}{c}}
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z}
\end{array}} \right|\] , the determinant will be equals to zero, so the final answer will be equals to as below:
\[ \Rightarrow \Delta = 0\]
Hence proved that \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right| = 0\].
Note: There are many properties of the determinant of the matrix but students’ needs to remember the important ones as shown below:
If all the elements of a row or column of any matrix are zero, then the determinant will always be equal to zero.
If all the elements of a row or column of a determinant are multiplied by any non-zero constant value, then the determinant will also be multiplied by the same constant value.
If all the elements of a row or column are proportional or we can say identical to the elements of another row or column, then the determinant will be equal to zero.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

