
Using properties of determinant then show that
\[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right| = 0\]
Answer
560.1k+ views
Hint: Here we will use the matrix determinant formula which states that for a matrix with dimensions \[2 \times 2\] , the determinant will be defined as:
\[\left| {\text{A}} \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\]
Similarly, for a matrix with dimensions \[3 \times 3\] , the determinant will be defined as:
\[\left| {\text{A}} \right| = \left| {\begin{array}{*{20}{c}}
a&d&g \\
b&e&h \\
c&f&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&h \\
f&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&g \\
f&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&g \\
e&h
\end{array}} \right|\]
\[ \Rightarrow \left| {\text{A}} \right| = a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right)\]
\[ \Rightarrow \left| {\text{A}} \right| = aei - ahf - bdi + bgf + cdh - cge\]
The symbol for determinant is shown as \[\left| {\text{A}} \right|\] or \[\Delta {\text{A}}\].
Complete step-by-step answer:
Step 1: We need to prove that the determinant \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\] is equal to zero.
Let, \[\Delta = \left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\]
We can write the above matrix as below:
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&{\dfrac{{\log y}}{{\log x}}}&{\dfrac{{\log z}}{{\log x}}} \\
{\dfrac{{\log x}}{{\log y}}}&1&{\dfrac{{\log z}}{{\log y}}} \\
{\dfrac{{\log x}}{{\log z}}}&{\dfrac{{\log y}}{{\log z}}}&1
\end{array}} \right|\] …………………….. (1) \[\left( {\because {{\log }_n}m = \dfrac{{\log m}}{{\log n}}} \right)\]
Step 2: Writing \[1 = \dfrac{{\log x}}{{\log x}}\] in the first row, \[1 = \dfrac{{\log y}}{{\log y}}\] in the second row, and \[1 = \dfrac{{\log z}}{{\log z}}\] the last row in the expression (1).
Step 3: By substituting the values mentioned in step number 2, we get:
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
{\dfrac{{\log x}}{{\log x}}}&{\dfrac{{\log y}}{{\log x}}}&{\dfrac{{\log z}}{{\log x}}} \\
{\dfrac{{\log x}}{{\log y}}}&{\dfrac{{\log y}}{{\log y}}}&{\dfrac{{\log z}}{{\log y}}} \\
{\dfrac{{\log x}}{{\log z}}}&{\dfrac{{\log y}}{{\log z}}}&{\dfrac{{\log z}}{{\log z}}}
\end{array}} \right|\] ……………. (2)
In the above expression (2), by taking \[\log x\] common from the first row, \[\log y\] common from the second row, and \[\log z\] common from the last row, we get:
\[ \Rightarrow \Delta = \dfrac{1}{{\log x\log y\log z}}\left| {\begin{array}{*{20}{c}}
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z}
\end{array}} \right|\]
Step 4: By using the property of determinant of matrices that if any two or more rows of the matrix are equal then the determinant of that matrix will be equals to zero.
Now in the expression \[\dfrac{1}{{\log x\log y\log z}}\left| {\begin{array}{*{20}{c}}
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z}
\end{array}} \right|\] , the determinant will be equals to zero, so the final answer will be equals to as below:
\[ \Rightarrow \Delta = 0\]
Hence proved that \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right| = 0\].
Note: There are many properties of the determinant of the matrix but students’ needs to remember the important ones as shown below:
If all the elements of a row or column of any matrix are zero, then the determinant will always be equal to zero.
If all the elements of a row or column of a determinant are multiplied by any non-zero constant value, then the determinant will also be multiplied by the same constant value.
If all the elements of a row or column are proportional or we can say identical to the elements of another row or column, then the determinant will be equal to zero.
\[\left| {\text{A}} \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc\]
Similarly, for a matrix with dimensions \[3 \times 3\] , the determinant will be defined as:
\[\left| {\text{A}} \right| = \left| {\begin{array}{*{20}{c}}
a&d&g \\
b&e&h \\
c&f&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&h \\
f&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&g \\
f&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&g \\
e&h
\end{array}} \right|\]
\[ \Rightarrow \left| {\text{A}} \right| = a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right)\]
\[ \Rightarrow \left| {\text{A}} \right| = aei - ahf - bdi + bgf + cdh - cge\]
The symbol for determinant is shown as \[\left| {\text{A}} \right|\] or \[\Delta {\text{A}}\].
Complete step-by-step answer:
Step 1: We need to prove that the determinant \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\] is equal to zero.
Let, \[\Delta = \left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right|\]
We can write the above matrix as below:
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&{\dfrac{{\log y}}{{\log x}}}&{\dfrac{{\log z}}{{\log x}}} \\
{\dfrac{{\log x}}{{\log y}}}&1&{\dfrac{{\log z}}{{\log y}}} \\
{\dfrac{{\log x}}{{\log z}}}&{\dfrac{{\log y}}{{\log z}}}&1
\end{array}} \right|\] …………………….. (1) \[\left( {\because {{\log }_n}m = \dfrac{{\log m}}{{\log n}}} \right)\]
Step 2: Writing \[1 = \dfrac{{\log x}}{{\log x}}\] in the first row, \[1 = \dfrac{{\log y}}{{\log y}}\] in the second row, and \[1 = \dfrac{{\log z}}{{\log z}}\] the last row in the expression (1).
Step 3: By substituting the values mentioned in step number 2, we get:
\[ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
{\dfrac{{\log x}}{{\log x}}}&{\dfrac{{\log y}}{{\log x}}}&{\dfrac{{\log z}}{{\log x}}} \\
{\dfrac{{\log x}}{{\log y}}}&{\dfrac{{\log y}}{{\log y}}}&{\dfrac{{\log z}}{{\log y}}} \\
{\dfrac{{\log x}}{{\log z}}}&{\dfrac{{\log y}}{{\log z}}}&{\dfrac{{\log z}}{{\log z}}}
\end{array}} \right|\] ……………. (2)
In the above expression (2), by taking \[\log x\] common from the first row, \[\log y\] common from the second row, and \[\log z\] common from the last row, we get:
\[ \Rightarrow \Delta = \dfrac{1}{{\log x\log y\log z}}\left| {\begin{array}{*{20}{c}}
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z}
\end{array}} \right|\]
Step 4: By using the property of determinant of matrices that if any two or more rows of the matrix are equal then the determinant of that matrix will be equals to zero.
Now in the expression \[\dfrac{1}{{\log x\log y\log z}}\left| {\begin{array}{*{20}{c}}
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z} \\
{\log x}&{\log y}&{\log z}
\end{array}} \right|\] , the determinant will be equals to zero, so the final answer will be equals to as below:
\[ \Rightarrow \Delta = 0\]
Hence proved that \[\left| {\begin{array}{*{20}{c}}
1&{{{\log }_x}y}&{{{\log }_x}z} \\
{{{\log }_y}x}&1&{{{\log }_y}z} \\
{{{\log }_z}x}&{{{\log }_z}y}&1
\end{array}} \right| = 0\].
Note: There are many properties of the determinant of the matrix but students’ needs to remember the important ones as shown below:
If all the elements of a row or column of any matrix are zero, then the determinant will always be equal to zero.
If all the elements of a row or column of a determinant are multiplied by any non-zero constant value, then the determinant will also be multiplied by the same constant value.
If all the elements of a row or column are proportional or we can say identical to the elements of another row or column, then the determinant will be equal to zero.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

