
Using integration, find the area of the region bounded by the triangle whose vertices are (-1,2), (1,5) and (3,4).
Answer
596.1k+ views
Hint: Since we need to integrate and find the area, we must find the equation of the 3 sides of the triangle. For finding the equation of the sides use the two point form of the equation of a line. Then integrate along the x axis.
Formula:
Slope: m=$\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Equation of a line when 2 points are given: $(y - {y_{2/1}}) = \left( {x - {x_{2/1}}} \right).m$ , where m is the slope of the line.
Complete step by step solution:
The vertices given are (-1,2), (1,5) and (3,4). Let them be A,B and C respectively.
Finding equation of the line AB-
A=(-1,2) and B=(1,5)
Slope= $\dfrac{{5 - 2}}{{1 - \left( { - 1} \right)}} = \dfrac{3}{2}$
Taking point B in the equation:
$
\left( {y - 5} \right) = {\text{ }}\left( {x - 1} \right).\dfrac{3}{2} \\
2\left( {y - 5} \right) = 3\left( {x - 1} \right) \\
2y - 10 = 3x - 3 \\
2y - 3x = 7......\left( i \right) \\
$
Equation of line BC-
B=(1,5) and C=(3,4)
Slope= $\dfrac{{4 - 5}}{{3 - 1}} = \dfrac{{ - 1}}{2}$
Taking point B in the equation:
$
\left( {y - 4} \right) = \left( {x - 3} \right)\dfrac{{\left( { - 1} \right)}}{2} \\
2\left( {y - 4} \right) = - \left( {x - 3} \right) \\
2y - 8 = - x + 3 \\
2y + x = 11......\left( {ii} \right) \\
$
Equation of line AC-
A=(-1,2) and C=(3,4)
Slope= $\dfrac{{4 - 2}}{{3 - \left( { - 1} \right)}} = \dfrac{2}{4} = \dfrac{1}{2}$
Taking point C in the equation:
$
\left( {y - 4} \right) = \left( {x - 3} \right)\dfrac{1}{2} \\
2\left( {y - 4} \right) = \left( {x - 3} \right) \\
2y - 8 = x - 3 \\
2y - x = 5.....\left( {iii} \right) \\
$
Integrating –
$\int\limits_{ - 1}^1 {AB} + \int\limits_1^3 {BC - } \int\limits_{ - 1}^3 {AC} $ = area of $\Delta ABC$
Since we are integrating along x we find y in terms of x from all the three given equations:
$
{\text{y = }}\dfrac{{\text{7}}}{{\text{2}}}{\text{ + }}\dfrac{{{\text{3x}}}}{{\text{2}}}{\text{ from}}\left( {\text{i}} \right) \\
{\text{y = }}\dfrac{{{\text{11}}}}{{\text{2}}}{\text{ - }}\dfrac{{\text{x}}}{{\text{2}}}{\text{ from}}\left( {{\text{ii}}} \right) \\
{\text{y = }}\dfrac{{\text{5}}}{{\text{2}}}{\text{ + }}\dfrac{{\text{x}}}{{\text{2}}}{\text{ from}}\left( {{\text{iii}}} \right) \\ $
$
= \int\limits_{ - 1}^1 {[\dfrac{{\text{7}}}{{\text{2}}}{\text{ + }}\dfrac{{{\text{3x}}}}{{\text{2}}}]{\text{ }} + {\text{ }}} \int\limits_1^3 {[\dfrac{{{\text{11}}}}{{\text{2}}}{\text{ - }}\dfrac{{\text{x}}}{{\text{2}}}]{\text{ }} - } {\text{ }}\int\limits_{ - 1}^3 {[\dfrac{{\text{5}}}{{\text{2}}}{\text{ + }}\dfrac{{\text{x}}}{{\text{2}}}} ] \\
= \int\limits_{ - 1}^1 {\dfrac{{\text{7}}}{{\text{2}}}{\text{ + }}\int\limits_{ - 1}^1 {\dfrac{{{\text{3x}}}}{{\text{2}}}} {\text{ }} + {\text{ }}} \int\limits_1^3 {\dfrac{{{\text{11}}}}{{\text{2}}}{\text{ - }}\int\limits_1^3 {\dfrac{{\text{x}}}{{\text{2}}}} {\text{ }} - } {\text{ }}\int\limits_{ - 1}^3 {\dfrac{{\text{5}}}{{\text{2}}} - \int\limits_{ - 1}^3 {\dfrac{{\text{x}}}{{\text{2}}}} } \\
= [\dfrac{{7x}}{2}\mathop ]\limits_{ - 1}^1 + [\dfrac{{{\text{3}}{{\text{x}}^2}}}{4}\mathop ]\limits_{ - 1}^1 + [\dfrac{{{\text{11x}}}}{{\text{2}}}\mathop ]\limits_1^3 - [\dfrac{{{{\text{x}}^2}}}{4}\mathop ]\limits_1^3 - [\dfrac{{{\text{5x}}}}{{\text{2}}}\mathop ]\limits_{ - 1}^3 - [\dfrac{{{{\text{x}}^2}}}{4}\mathop ]\limits_{ - 1}^3 \\
= [\dfrac{{7\left( 1 \right)}}{2} - \dfrac{{7\left( { - 1} \right)}}{2}] + [\dfrac{{{\text{3}}{{\left( 1 \right)}^2}}}{4} - \dfrac{{{\text{3}}{{\left( { - 1} \right)}^2}}}{4}] + \\
[\dfrac{{{\text{11}}\left( 3 \right)}}{{\text{2}}} - \dfrac{{{\text{11}}\left( 1 \right)}}{{\text{2}}}] - [\dfrac{{{{\left( 3 \right)}^2}}}{4} - \dfrac{{{{\left( 1 \right)}^2}}}{4}] - [\dfrac{{{\text{5}}\left( 3 \right)}}{{\text{2}}} - \dfrac{{{\text{5}}\left( { - 1} \right)}}{{\text{2}}}] - \left[ {\dfrac{{{3^2}}}{4} - \dfrac{{{{\left( { - 1} \right)}^2}}}{4}} \right] \\
= [\dfrac{7}{2} + \dfrac{7}{2}] + [\dfrac{{\text{3}}}{4} - \dfrac{3}{4}] + [\dfrac{{33}}{{\text{2}}} - \dfrac{{{\text{11}}}}{{\text{2}}}] - [\dfrac{9}{4} - \dfrac{1}{4}] - [\dfrac{{15}}{2} + \dfrac{5}{2}] - [\dfrac{9}{4} - \dfrac{1}{4}] \\
= 7 + 0 + 11 - 2 - 10 - 2 \\
= 4{\text{ }} \\
$
The area of the triangle is 4 sq units.
Note: Since we integrated along the x axis the equations were considered in x if we were to integrate along the y axis, the equation would be considered as a whole in y and the limits of integration would be the y coordinates of the triangle.
Formula:
Slope: m=$\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
Equation of a line when 2 points are given: $(y - {y_{2/1}}) = \left( {x - {x_{2/1}}} \right).m$ , where m is the slope of the line.
Complete step by step solution:
The vertices given are (-1,2), (1,5) and (3,4). Let them be A,B and C respectively.
Finding equation of the line AB-
A=(-1,2) and B=(1,5)
Slope= $\dfrac{{5 - 2}}{{1 - \left( { - 1} \right)}} = \dfrac{3}{2}$
Taking point B in the equation:
$
\left( {y - 5} \right) = {\text{ }}\left( {x - 1} \right).\dfrac{3}{2} \\
2\left( {y - 5} \right) = 3\left( {x - 1} \right) \\
2y - 10 = 3x - 3 \\
2y - 3x = 7......\left( i \right) \\
$
Equation of line BC-
B=(1,5) and C=(3,4)
Slope= $\dfrac{{4 - 5}}{{3 - 1}} = \dfrac{{ - 1}}{2}$
Taking point B in the equation:
$
\left( {y - 4} \right) = \left( {x - 3} \right)\dfrac{{\left( { - 1} \right)}}{2} \\
2\left( {y - 4} \right) = - \left( {x - 3} \right) \\
2y - 8 = - x + 3 \\
2y + x = 11......\left( {ii} \right) \\
$
Equation of line AC-
A=(-1,2) and C=(3,4)
Slope= $\dfrac{{4 - 2}}{{3 - \left( { - 1} \right)}} = \dfrac{2}{4} = \dfrac{1}{2}$
Taking point C in the equation:
$
\left( {y - 4} \right) = \left( {x - 3} \right)\dfrac{1}{2} \\
2\left( {y - 4} \right) = \left( {x - 3} \right) \\
2y - 8 = x - 3 \\
2y - x = 5.....\left( {iii} \right) \\
$
Integrating –
$\int\limits_{ - 1}^1 {AB} + \int\limits_1^3 {BC - } \int\limits_{ - 1}^3 {AC} $ = area of $\Delta ABC$
Since we are integrating along x we find y in terms of x from all the three given equations:
$
{\text{y = }}\dfrac{{\text{7}}}{{\text{2}}}{\text{ + }}\dfrac{{{\text{3x}}}}{{\text{2}}}{\text{ from}}\left( {\text{i}} \right) \\
{\text{y = }}\dfrac{{{\text{11}}}}{{\text{2}}}{\text{ - }}\dfrac{{\text{x}}}{{\text{2}}}{\text{ from}}\left( {{\text{ii}}} \right) \\
{\text{y = }}\dfrac{{\text{5}}}{{\text{2}}}{\text{ + }}\dfrac{{\text{x}}}{{\text{2}}}{\text{ from}}\left( {{\text{iii}}} \right) \\ $
$
= \int\limits_{ - 1}^1 {[\dfrac{{\text{7}}}{{\text{2}}}{\text{ + }}\dfrac{{{\text{3x}}}}{{\text{2}}}]{\text{ }} + {\text{ }}} \int\limits_1^3 {[\dfrac{{{\text{11}}}}{{\text{2}}}{\text{ - }}\dfrac{{\text{x}}}{{\text{2}}}]{\text{ }} - } {\text{ }}\int\limits_{ - 1}^3 {[\dfrac{{\text{5}}}{{\text{2}}}{\text{ + }}\dfrac{{\text{x}}}{{\text{2}}}} ] \\
= \int\limits_{ - 1}^1 {\dfrac{{\text{7}}}{{\text{2}}}{\text{ + }}\int\limits_{ - 1}^1 {\dfrac{{{\text{3x}}}}{{\text{2}}}} {\text{ }} + {\text{ }}} \int\limits_1^3 {\dfrac{{{\text{11}}}}{{\text{2}}}{\text{ - }}\int\limits_1^3 {\dfrac{{\text{x}}}{{\text{2}}}} {\text{ }} - } {\text{ }}\int\limits_{ - 1}^3 {\dfrac{{\text{5}}}{{\text{2}}} - \int\limits_{ - 1}^3 {\dfrac{{\text{x}}}{{\text{2}}}} } \\
= [\dfrac{{7x}}{2}\mathop ]\limits_{ - 1}^1 + [\dfrac{{{\text{3}}{{\text{x}}^2}}}{4}\mathop ]\limits_{ - 1}^1 + [\dfrac{{{\text{11x}}}}{{\text{2}}}\mathop ]\limits_1^3 - [\dfrac{{{{\text{x}}^2}}}{4}\mathop ]\limits_1^3 - [\dfrac{{{\text{5x}}}}{{\text{2}}}\mathop ]\limits_{ - 1}^3 - [\dfrac{{{{\text{x}}^2}}}{4}\mathop ]\limits_{ - 1}^3 \\
= [\dfrac{{7\left( 1 \right)}}{2} - \dfrac{{7\left( { - 1} \right)}}{2}] + [\dfrac{{{\text{3}}{{\left( 1 \right)}^2}}}{4} - \dfrac{{{\text{3}}{{\left( { - 1} \right)}^2}}}{4}] + \\
[\dfrac{{{\text{11}}\left( 3 \right)}}{{\text{2}}} - \dfrac{{{\text{11}}\left( 1 \right)}}{{\text{2}}}] - [\dfrac{{{{\left( 3 \right)}^2}}}{4} - \dfrac{{{{\left( 1 \right)}^2}}}{4}] - [\dfrac{{{\text{5}}\left( 3 \right)}}{{\text{2}}} - \dfrac{{{\text{5}}\left( { - 1} \right)}}{{\text{2}}}] - \left[ {\dfrac{{{3^2}}}{4} - \dfrac{{{{\left( { - 1} \right)}^2}}}{4}} \right] \\
= [\dfrac{7}{2} + \dfrac{7}{2}] + [\dfrac{{\text{3}}}{4} - \dfrac{3}{4}] + [\dfrac{{33}}{{\text{2}}} - \dfrac{{{\text{11}}}}{{\text{2}}}] - [\dfrac{9}{4} - \dfrac{1}{4}] - [\dfrac{{15}}{2} + \dfrac{5}{2}] - [\dfrac{9}{4} - \dfrac{1}{4}] \\
= 7 + 0 + 11 - 2 - 10 - 2 \\
= 4{\text{ }} \\
$
The area of the triangle is 4 sq units.
Note: Since we integrated along the x axis the equations were considered in x if we were to integrate along the y axis, the equation would be considered as a whole in y and the limits of integration would be the y coordinates of the triangle.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

