
Using disk or ring method, how do you find the volume of \[y = {x^2} - x,y = 3 - {x^2}\] about \[y = 4\] ?
Answer
516.6k+ views
Hint: Here, we find the volume of the given function using the disk methods. The disk method, also known as the method of disks or rings, is a way to calculate the volume of a solid of revolution by taking the sum of cross-sectional areas of infinitesimal thickness of the solid. The volume V of a solid of revolution, \[V = \pi \int\limits_a^b {{{\left( {{{\left( {f(x)} \right)}^2} - {{\left( {g(x)} \right)}^2}} \right)}^{}}dx} \] .
Complete step by step solution:
The given equation of parabola, we have
\[
y = {x^2} - x \to \left( 1 \right) \\
y = 3 - {x^2} \to \left( 2 \right) \\
y = 4 \to \left( 3 \right) \\
\]
The region enclosed by the three curve in the below graph,
The volume V of a solid of revolution, \[V = \pi \int\limits_a^b {{{\left( {{{\left( {f(x)} \right)}^2} - {{\left( {g(x)} \right)}^2}} \right)}^{}}dx} \] .
Where, \[V - \] Volume of solid
\[a - \] Least value of \[x\] of \[f(x)\]
\[b - \] Highest value of \[x\] of \[f(x)\]
\[f(x) - \] The value of radius of the disc
\[dx - \] The value of height of the disc
To find the point of intersection, where the two parabola meets,
\[
{x^2} - x = 3 - {x^2} \\
{x^2} - x - 3 + {x^2} = 0 \;
\]
By simplifying the equation to find the point of intersection
\[
2{x^2} - x - 3 = 0 \\
x(2x - 1) = 3 \;
\]
To simplify, we get
\[x = 3\] ,
Then, another factor is
\[
2x - 1 = 3 \\
2x = 3 + 1 \\
x = \dfrac{4}{2} = 2 \;
\]
The point of intersection, \[(a,b) = (2,3)\]
Let the given parabola equation,
\[
f(x) = {x^2} - x \\
g(x) = 3 - {x^2} \;
\]
To find the volume,
\[V = \pi \int\limits_a^b {{{\left( {{{\left( {f(x)} \right)}^2} - {{\left( {g(x)} \right)}^2}} \right)}^{}}dx} \]
By substituting values in the formula
\[
\\
V = \pi \int\limits_2^3 {\left( {\left( {{{({x^2})}^2} - 2{x^2} \cdot x + {x^2}} \right) - \left( {{3^2} - 2 \times 3 \cdot {x^2} + {{\left( {{x^2}} \right)}^2}} \right)} \right)dx} \\
V = \pi \int\limits_2^3 {\left( {\left( {{x^4} - 2{x^3} + {x^2}} \right) - \left( {9 - 6{x^2} + {x^4}} \right)} \right)dx} \;
\]
To simply it by apply the algebraic formula, \[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
\[V = \pi \int\limits_2^3 {\left( {\left( {{{({x^2})}^2} - 2{x^2} \cdot x + {x^2}} \right) - \left( {{3^2} - 2 \times 3 \cdot {x^2} + {{\left( {{x^2}} \right)}^2}} \right)} \right)dx} \]
\[V = \pi \int\limits_2^3 {\left( {\left( {{x^4} - 2{x^3} + {x^2}} \right) - \left( {9 - 6{x^2} + {x^4}} \right)} \right)dx} \]
To evaluate it by using integral, we get
\[V = \pi \left[ {\left( {\dfrac{{{x^5}}}{5} - \dfrac{{2{x^4}}}{4} + \dfrac{{{x^3}}}{3}} \right) - \left( {9x - \dfrac{{6{x^3}}}{3} + \dfrac{{{x^5}}}{5}} \right)} \right] _2^3\]
By simplify the above equation, we get
\[V = \pi \left[ {\dfrac{{{x^5}}}{5} - \dfrac{{2{x^4}}}{4} + \dfrac{{{x^3}}}{3} - 9x + \dfrac{{6{x^3}}}{3} - \dfrac{{{x^5}}}{5}} \right] _2^3\]
Performing addition and subtraction to simplify, we get
\[V = \pi \left[ { - \dfrac{{2{x^4}}}{4} + \dfrac{{7{x^3}}}{3} - 9x} \right] _2^3\]
Solving the equation by substitute upper and lower limit, we get
\[V = \pi \left[ {\left( { - \dfrac{{2 \times {3^4}}}{4} + \dfrac{{7 \times {3^3}}}{3} - 9 \times 3} \right) - \left( { - \dfrac{{2 \times {2^4}}}{4} + \dfrac{{7 \times {2^3}}}{3} - 9 \times 2} \right)} \right] \]
By simplify the power of the value,
\[V = \pi \left( { - \dfrac{{2 \times 81}}{4} + \dfrac{{7 \times 27}}{3} - 9 \times 3 + \dfrac{{2 \times 16}}{4} - \dfrac{{7 \times 8}}{3} + 9 \times 2} \right)\]
By performing operation for the same denominator value, we get
\[V = \pi \left( {\dfrac{{ - (2 \times 81) + (2 \times 16)}}{4} + \dfrac{{(7 \times 27) - (7 \times 8)}}{3} + 9( - 3 + 2)} \right)\]
\[V = \pi \left( {\dfrac{{2( - 81 + 16)}}{4} + \dfrac{{7(27 - 8)}}{3} + 9( - 1)} \right)\]
Now, we get
\[V = \pi \left( {\dfrac{{2( - 65)}}{4} + \dfrac{{7(19)}}{3} - 9} \right)\]
Take LCM on above equation, we get
\[V = \pi \left( {\dfrac{{2( - 65)(3) + 7(19)(4) - 9(12)}}{{12}}} \right) = \pi \left( {\dfrac{{ - 390 + 532 - 108}}{{12}}} \right)\]
\[V = \pi \dfrac{{(532 - 498)}}{{12}} = \pi \dfrac{{34}}{{12}} = \pi \dfrac{{17}}{6}\]
\[V = \dfrac{{17}}{6}\pi \]
Therefore, the volume bounded by the region, \[V = \dfrac{{17}}{6}\pi \]
So, the correct answer is “ \[V = \dfrac{{17}}{6}\pi \] ”.
Note: A solid of revolution is formed by rotating a two-dimensional function around an axis to produce a three-dimensional shape (either a full solid or a ring).Here we use integration to solve the volume bounded by the region with the point of intersection. We remember the formula for volume met by the two parabola functions.
Complete step by step solution:
The given equation of parabola, we have
\[
y = {x^2} - x \to \left( 1 \right) \\
y = 3 - {x^2} \to \left( 2 \right) \\
y = 4 \to \left( 3 \right) \\
\]
The region enclosed by the three curve in the below graph,
The volume V of a solid of revolution, \[V = \pi \int\limits_a^b {{{\left( {{{\left( {f(x)} \right)}^2} - {{\left( {g(x)} \right)}^2}} \right)}^{}}dx} \] .
Where, \[V - \] Volume of solid
\[a - \] Least value of \[x\] of \[f(x)\]
\[b - \] Highest value of \[x\] of \[f(x)\]
\[f(x) - \] The value of radius of the disc
\[dx - \] The value of height of the disc
To find the point of intersection, where the two parabola meets,
\[
{x^2} - x = 3 - {x^2} \\
{x^2} - x - 3 + {x^2} = 0 \;
\]
By simplifying the equation to find the point of intersection
\[
2{x^2} - x - 3 = 0 \\
x(2x - 1) = 3 \;
\]
To simplify, we get
\[x = 3\] ,
Then, another factor is
\[
2x - 1 = 3 \\
2x = 3 + 1 \\
x = \dfrac{4}{2} = 2 \;
\]
The point of intersection, \[(a,b) = (2,3)\]
Let the given parabola equation,
\[
f(x) = {x^2} - x \\
g(x) = 3 - {x^2} \;
\]
To find the volume,
\[V = \pi \int\limits_a^b {{{\left( {{{\left( {f(x)} \right)}^2} - {{\left( {g(x)} \right)}^2}} \right)}^{}}dx} \]
By substituting values in the formula
\[
\\
V = \pi \int\limits_2^3 {\left( {\left( {{{({x^2})}^2} - 2{x^2} \cdot x + {x^2}} \right) - \left( {{3^2} - 2 \times 3 \cdot {x^2} + {{\left( {{x^2}} \right)}^2}} \right)} \right)dx} \\
V = \pi \int\limits_2^3 {\left( {\left( {{x^4} - 2{x^3} + {x^2}} \right) - \left( {9 - 6{x^2} + {x^4}} \right)} \right)dx} \;
\]
To simply it by apply the algebraic formula, \[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
\[V = \pi \int\limits_2^3 {\left( {\left( {{{({x^2})}^2} - 2{x^2} \cdot x + {x^2}} \right) - \left( {{3^2} - 2 \times 3 \cdot {x^2} + {{\left( {{x^2}} \right)}^2}} \right)} \right)dx} \]
\[V = \pi \int\limits_2^3 {\left( {\left( {{x^4} - 2{x^3} + {x^2}} \right) - \left( {9 - 6{x^2} + {x^4}} \right)} \right)dx} \]
To evaluate it by using integral, we get
\[V = \pi \left[ {\left( {\dfrac{{{x^5}}}{5} - \dfrac{{2{x^4}}}{4} + \dfrac{{{x^3}}}{3}} \right) - \left( {9x - \dfrac{{6{x^3}}}{3} + \dfrac{{{x^5}}}{5}} \right)} \right] _2^3\]
By simplify the above equation, we get
\[V = \pi \left[ {\dfrac{{{x^5}}}{5} - \dfrac{{2{x^4}}}{4} + \dfrac{{{x^3}}}{3} - 9x + \dfrac{{6{x^3}}}{3} - \dfrac{{{x^5}}}{5}} \right] _2^3\]
Performing addition and subtraction to simplify, we get
\[V = \pi \left[ { - \dfrac{{2{x^4}}}{4} + \dfrac{{7{x^3}}}{3} - 9x} \right] _2^3\]
Solving the equation by substitute upper and lower limit, we get
\[V = \pi \left[ {\left( { - \dfrac{{2 \times {3^4}}}{4} + \dfrac{{7 \times {3^3}}}{3} - 9 \times 3} \right) - \left( { - \dfrac{{2 \times {2^4}}}{4} + \dfrac{{7 \times {2^3}}}{3} - 9 \times 2} \right)} \right] \]
By simplify the power of the value,
\[V = \pi \left( { - \dfrac{{2 \times 81}}{4} + \dfrac{{7 \times 27}}{3} - 9 \times 3 + \dfrac{{2 \times 16}}{4} - \dfrac{{7 \times 8}}{3} + 9 \times 2} \right)\]
By performing operation for the same denominator value, we get
\[V = \pi \left( {\dfrac{{ - (2 \times 81) + (2 \times 16)}}{4} + \dfrac{{(7 \times 27) - (7 \times 8)}}{3} + 9( - 3 + 2)} \right)\]
\[V = \pi \left( {\dfrac{{2( - 81 + 16)}}{4} + \dfrac{{7(27 - 8)}}{3} + 9( - 1)} \right)\]
Now, we get
\[V = \pi \left( {\dfrac{{2( - 65)}}{4} + \dfrac{{7(19)}}{3} - 9} \right)\]
Take LCM on above equation, we get
\[V = \pi \left( {\dfrac{{2( - 65)(3) + 7(19)(4) - 9(12)}}{{12}}} \right) = \pi \left( {\dfrac{{ - 390 + 532 - 108}}{{12}}} \right)\]
\[V = \pi \dfrac{{(532 - 498)}}{{12}} = \pi \dfrac{{34}}{{12}} = \pi \dfrac{{17}}{6}\]
\[V = \dfrac{{17}}{6}\pi \]
Therefore, the volume bounded by the region, \[V = \dfrac{{17}}{6}\pi \]
So, the correct answer is “ \[V = \dfrac{{17}}{6}\pi \] ”.
Note: A solid of revolution is formed by rotating a two-dimensional function around an axis to produce a three-dimensional shape (either a full solid or a ring).Here we use integration to solve the volume bounded by the region with the point of intersection. We remember the formula for volume met by the two parabola functions.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

