Answer
Verified
429.3k+ views
Hint: We are going to use the binomial theorem to expand the given values. After expanding the terms, we will get the required answer.
Formula used:
Formula is used for the binomial theorem
\[{{(x+a)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{(x)}^{n1}}a{{+}^{n}}{{C}_{2}}{{(x)}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
Complete step by step answer:
Formula is used for the binomial theorem
\[{{(x+a)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{(x)}^{n1}}a{{+}^{n}}{{C}_{2}}{{(x)}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
\[{{(100+2)}^{4}}{{=}^{4}}{{C}_{0}}{{(100)}^{4}}{{+}^{4}}{{C}_{1}}{{(100)}^{41}}(2){{+}^{4}}{{C}_{2}}\]\[{{(100)}^{42}}{{(2)}^{2}}{{+}^{4}}{{C}_{3}}{{(100)}^{43}}{{(2)}^{3}}\]+\[^{4}{{C}_{4}}{{(2)}^{4}}\]
Rewrite the expression after simplification
\[\Rightarrow \,\,\,\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
0 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 0}{{(100)}^{4}}+\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
1 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 1}\times {{(100)}^{3}}2\]+\[\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
2 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 2}{{(100)}^{2}}\times 4+\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
3 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 3}(100)\times 8+16\]
Simplify the expression
\[\Rightarrow \,\,\,{{(100)}^{4}}+\dfrac{4\times \left| \!{\underline {\,
3 \,}} \right. }{\left| \!{\underline {\,
1 \,}} \right. \times \left| \!{\underline {\,
3 \,}} \right. }\,\,\,100\times 8+16\]
Rewrite the equation after simplification
\[=\,\,\,100000000+8000000+240000+3200+16\]
\[=108243216\]
\[(ii)\,\,\,{{(1+0.1)}^{5}}\]
Use the formula of the binomial theorem
\[{{(x+a)}^{n}}=\,{{\,}^{n}}{{C}_{0}}{{x}^{n}}a{{+}^{n}}{{C}_{1}}{{x}^{n1}}a{{+}^{n}}{{C}_{2}}{{x}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
\[{{(1+0.1)}^{5}}{{=}^{5}}{{C}_{0}}{{(1)}^{5}}{{+}^{5}}{{C}_{1}}{{(1)}^{51}}(0.1){{+}^{5}}{{C}_{2}}{{(1)}^{51}}{{(0.1)}^{2}}\]+\[^{5}{{C}_{3}}{{(1)}^{53}}{{(0.1)}^{3}}{{+}^{5}}{{C}_{4}}{{(1)}^{54}}{{(0.1)}^{4}}{{(100)}^{2}}\times 4{{+}^{5}}{{C}_{5}}{{(0.1)}^{5}}\]
Simplify the expression
\[\Rightarrow \,\,\,1+5\times (0.1)+\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
2 \,}} \right. \,\times \left| \!{\underline {\,
3 \,}} \right. }{{(0.1)}^{2}}+\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
3 \,}} \right. \times \left| \!{\underline {\,
2 \,}} \right. }\times {{(0.1)}^{3}}\]+ \[\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
4 \,}} \right. \times \left| \!{\underline {\,
1 \,}} \right. }\times 1\times {{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Simplify the expression
\[\Rightarrow \,\,1+5\times (0.1)+\dfrac{\left| \!{\underline {\,
3 \,}} \right. \times 4\times 5}{1\times 2\times 3}{{(0.1)}^{2}}+\dfrac{\left| \!{\underline {\,
3 \,}} \right. \times 4\times 5}{\left| \!{\underline {\,
3 \,}} \right. \times 2\times 1}\times (0.1)\]+\[\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
4 \,}} \right. \times \left| \!{\underline {\,
1 \,}} \right. }\times {{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Rewrite the expression after simplification
\[\Rightarrow \,\,1+0.5+10\times {{(0.1)}^{2}}+10\times {{(0.1)}^{3}}+5{{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Use the concept of the addition
\[\Rightarrow \,\,1+0.5+0.1+0.01+0.0005+0.00001\]
\[\Rightarrow \,\,1.61051\]
Note:
\[(i)\]These types of problems are always solved by the binomial theorem.
\[(ii)\]When the concept of the binomial theorem is used, then we always use the factorial method.
Formula used:
Formula is used for the binomial theorem
\[{{(x+a)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{(x)}^{n1}}a{{+}^{n}}{{C}_{2}}{{(x)}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
Complete step by step answer:
Formula is used for the binomial theorem
\[{{(x+a)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{(x)}^{n1}}a{{+}^{n}}{{C}_{2}}{{(x)}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
\[{{(100+2)}^{4}}{{=}^{4}}{{C}_{0}}{{(100)}^{4}}{{+}^{4}}{{C}_{1}}{{(100)}^{41}}(2){{+}^{4}}{{C}_{2}}\]\[{{(100)}^{42}}{{(2)}^{2}}{{+}^{4}}{{C}_{3}}{{(100)}^{43}}{{(2)}^{3}}\]+\[^{4}{{C}_{4}}{{(2)}^{4}}\]
Rewrite the expression after simplification
\[\Rightarrow \,\,\,\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
0 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 0}{{(100)}^{4}}+\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
1 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 1}\times {{(100)}^{3}}2\]+\[\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
2 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 2}{{(100)}^{2}}\times 4+\dfrac{\left| \!{\underline {\,
4 \,}} \right. }{\left| \!{\underline {\,
3 \,}} \right. \times \left| \!{\underline {\,
4 \,}} \right. - 3}(100)\times 8+16\]
Simplify the expression
\[\Rightarrow \,\,\,{{(100)}^{4}}+\dfrac{4\times \left| \!{\underline {\,
3 \,}} \right. }{\left| \!{\underline {\,
1 \,}} \right. \times \left| \!{\underline {\,
3 \,}} \right. }\,\,\,100\times 8+16\]
Rewrite the equation after simplification
\[=\,\,\,100000000+8000000+240000+3200+16\]
\[=108243216\]
\[(ii)\,\,\,{{(1+0.1)}^{5}}\]
Use the formula of the binomial theorem
\[{{(x+a)}^{n}}=\,{{\,}^{n}}{{C}_{0}}{{x}^{n}}a{{+}^{n}}{{C}_{1}}{{x}^{n1}}a{{+}^{n}}{{C}_{2}}{{x}^{n2}}{{a}^{2}}+.......{{+}^{n}}{{C}_{n}}{{a}^{n}}\]
\[{{(1+0.1)}^{5}}{{=}^{5}}{{C}_{0}}{{(1)}^{5}}{{+}^{5}}{{C}_{1}}{{(1)}^{51}}(0.1){{+}^{5}}{{C}_{2}}{{(1)}^{51}}{{(0.1)}^{2}}\]+\[^{5}{{C}_{3}}{{(1)}^{53}}{{(0.1)}^{3}}{{+}^{5}}{{C}_{4}}{{(1)}^{54}}{{(0.1)}^{4}}{{(100)}^{2}}\times 4{{+}^{5}}{{C}_{5}}{{(0.1)}^{5}}\]
Simplify the expression
\[\Rightarrow \,\,\,1+5\times (0.1)+\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
2 \,}} \right. \,\times \left| \!{\underline {\,
3 \,}} \right. }{{(0.1)}^{2}}+\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
3 \,}} \right. \times \left| \!{\underline {\,
2 \,}} \right. }\times {{(0.1)}^{3}}\]+ \[\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
4 \,}} \right. \times \left| \!{\underline {\,
1 \,}} \right. }\times 1\times {{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Simplify the expression
\[\Rightarrow \,\,1+5\times (0.1)+\dfrac{\left| \!{\underline {\,
3 \,}} \right. \times 4\times 5}{1\times 2\times 3}{{(0.1)}^{2}}+\dfrac{\left| \!{\underline {\,
3 \,}} \right. \times 4\times 5}{\left| \!{\underline {\,
3 \,}} \right. \times 2\times 1}\times (0.1)\]+\[\dfrac{\left| \!{\underline {\,
5 \,}} \right. }{\left| \!{\underline {\,
4 \,}} \right. \times \left| \!{\underline {\,
1 \,}} \right. }\times {{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Rewrite the expression after simplification
\[\Rightarrow \,\,1+0.5+10\times {{(0.1)}^{2}}+10\times {{(0.1)}^{3}}+5{{(0.1)}^{4}}+{{(0.1)}^{5}}\]
Use the concept of the addition
\[\Rightarrow \,\,1+0.5+0.1+0.01+0.0005+0.00001\]
\[\Rightarrow \,\,1.61051\]
Note:
\[(i)\]These types of problems are always solved by the binomial theorem.
\[(ii)\]When the concept of the binomial theorem is used, then we always use the factorial method.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE