Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Using binomial theorem, find the value of
(i)(102)4
(ii)(1.1)5

Answer
VerifiedVerified
489.6k+ views
like imagedislike image
Hint: We are going to use the binomial theorem to expand the given values. After expanding the terms, we will get the required answer.

Formula used:
Formula is used for the binomial theorem
(x+a)n=nC0xn+nC1(x)n1a+nC2(x)n2a2+.......+nCnan

Complete step by step answer:
Formula is used for the binomial theorem
(x+a)n=nC0xn+nC1(x)n1a+nC2(x)n2a2+.......+nCnan
(100+2)4=4C0(100)4+4C1(100)41(2)+4C2(100)42(2)2+4C3(100)43(2)3+4C4(2)4
Rewrite the expression after simplification
|4|0×|40(100)4+|4|1×|41×(100)32+|4|2×|42(100)2×4+|4|3×|43(100)×8+16
Simplify the expression
(100)4+4×|3|1×|3100×8+16
Rewrite the equation after simplification
=100000000+8000000+240000+3200+16
=108243216
(ii)(1+0.1)5
Use the formula of the binomial theorem
(x+a)n=nC0xna+nC1xn1a+nC2xn2a2+.......+nCnan
(1+0.1)5=5C0(1)5+5C1(1)51(0.1)+5C2(1)51(0.1)2+5C3(1)53(0.1)3+5C4(1)54(0.1)4(100)2×4+5C5(0.1)5
Simplify the expression
1+5×(0.1)+|5|2×|3(0.1)2+|5|3×|2×(0.1)3+ |5|4×|1×1×(0.1)4+(0.1)5
Simplify the expression
1+5×(0.1)+|3×4×51×2×3(0.1)2+|3×4×5|3×2×1×(0.1)+|5|4×|1×(0.1)4+(0.1)5
Rewrite the expression after simplification
1+0.5+10×(0.1)2+10×(0.1)3+5(0.1)4+(0.1)5
Use the concept of the addition
1+0.5+0.1+0.01+0.0005+0.00001
1.61051

Note:
(i)These types of problems are always solved by the binomial theorem.
(ii)When the concept of the binomial theorem is used, then we always use the factorial method.

Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for MAHARASHTRABOARD students
PhysicsPhysics
BiologyBiology
ChemistryChemistry
MathsMaths
₹34,650 (9% Off)
₹31,500 per year
Select and buy