Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Using binomial theorem, find the value of
(i)(102)4
(ii)(1.1)5

Answer
VerifiedVerified
490.8k+ views
like imagedislike image
Hint: We are going to use the binomial theorem to expand the given values. After expanding the terms, we will get the required answer.

Formula used:
Formula is used for the binomial theorem
(x+a)n=nC0xn+nC1(x)n1a+nC2(x)n2a2+.......+nCnan

Complete step by step answer:
Formula is used for the binomial theorem
(x+a)n=nC0xn+nC1(x)n1a+nC2(x)n2a2+.......+nCnan
(100+2)4=4C0(100)4+4C1(100)41(2)+4C2(100)42(2)2+4C3(100)43(2)3+4C4(2)4
Rewrite the expression after simplification
|4|0×|40(100)4+|4|1×|41×(100)32+|4|2×|42(100)2×4+|4|3×|43(100)×8+16
Simplify the expression
(100)4+4×|3|1×|3100×8+16
Rewrite the equation after simplification
=100000000+8000000+240000+3200+16
=108243216
(ii)(1+0.1)5
Use the formula of the binomial theorem
(x+a)n=nC0xna+nC1xn1a+nC2xn2a2+.......+nCnan
(1+0.1)5=5C0(1)5+5C1(1)51(0.1)+5C2(1)51(0.1)2+5C3(1)53(0.1)3+5C4(1)54(0.1)4(100)2×4+5C5(0.1)5
Simplify the expression
1+5×(0.1)+|5|2×|3(0.1)2+|5|3×|2×(0.1)3+ |5|4×|1×1×(0.1)4+(0.1)5
Simplify the expression
1+5×(0.1)+|3×4×51×2×3(0.1)2+|3×4×5|3×2×1×(0.1)+|5|4×|1×(0.1)4+(0.1)5
Rewrite the expression after simplification
1+0.5+10×(0.1)2+10×(0.1)3+5(0.1)4+(0.1)5
Use the concept of the addition
1+0.5+0.1+0.01+0.0005+0.00001
1.61051

Note:
(i)These types of problems are always solved by the binomial theorem.
(ii)When the concept of the binomial theorem is used, then we always use the factorial method.