
Using binomial theorem, expand \[\{ {(x + y)^5} + {(x - y)^5}\} \] and hence find the value of \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \].
Answer
566.4k+ views
Hint: To solve this question first thing we should know that ${\left( {x + y} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}} \cdot {y^r}} $ and here $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, ${\left( {x - y} \right)^n} = {\left( { - 1} \right)^r}\sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}} \cdot {y^r}} $ and on further expanding the equation this question can be solved easily.
Complete step by step answer:
Given, the expression is \[\{ {(x + y)^5} + {(x - y)^5}\} \].
Now, substitute 5 for n, in the equation ${\left( {x + y} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}} \cdot {y^r}} $.
So,
${\left( {x + y} \right)^5} = \sum\limits_{r = 0}^5 {^5{C_r}{x^{5 - r}} \cdot {y^r}} $, on expanding we get.
\[
{\left( {x + y} \right)^5}{ = ^5}{C_0}{x^5} \cdot {y^0}{ + ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ + ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ + ^5}{C_5}{x^0} \cdot {y^5} \\
{\left( {x + y} \right)^5}{ = ^5}{C_0}{x^5}{ + ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ + ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ + ^5}{C_5}{y^5} \\
\]………..(i)
Now, consider the expression, ${\left( {x - y} \right)^n} = {\left( { - 1} \right)^r}\sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}} \cdot {y^r}} $, substitute 5 for n, in the equation ${\left( {x - y} \right)^n} = {\left( { - 1} \right)^r}\sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}} \cdot {y^r}} $.
So,
${ \Rightarrow \left( {x - y} \right)^5} = {\left( { - 1} \right)^r}\sum\limits_{r = 0}^5 {^5{C_r}{x^{5 - r}} \cdot {y^r}} $, on expanding we will get the equation as,
\[
{\Rightarrow \left( {x - y} \right)^5} = {\left( { - 1} \right)^0}{\,^5}{C_0}{x^5} \cdot {y^0} + {\left( { - 1} \right)^1}{\,^5}{C_1}{x^4} \cdot y + {\left( { - 1} \right)^2}{\,^5}{C_2}{x^3} \cdot {y^2} + {\left( { - 1} \right)^3}{\,^5}{C_3}{x^2} \cdot {y^3} + {\left( { - 1} \right)^1}{\,^5}{C_4}x \cdot {y^4} + {\left( { - 1} \right)^1}{\,^5}{C_5}{x^0} \cdot {y^5} \\
{\Rightarrow \left( {x - y} \right)^5}{ = ^5}{C_0}{x^5} \cdot {y^0}{ - ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ - ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ - ^5}{C_5}{x^0} \cdot {y^5} \\
\]\[\Rightarrow {\left( {x - y} \right)^5}{ = ^5}{C_0}{x^5}{ - ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ - ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ - ^5}{C_5}{y^5}\]……………………….(ii)
Now, add the equation (i) and (ii).
\[
{\left( {x + y} \right)^5}{ = ^5}{C_0}{x^5}{ + ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ + ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ + ^5}{C_5}{y^5} \\
\underline {{{\left( {x - y} \right)}^5}{ = ^5}{C_0}{x^5}{ - ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ - ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ - ^5}{C_5}{y^5}} \\
{\left( {x + y} \right)^5} + {\left( {x - y} \right)^5} = 2\left( {^5{C_0}{x^5}{ + ^5}{C_2}{x^3} \cdot {y^2}{ + ^5}{C_4}x \cdot {y^4}} \right) \\
{\left( {x + y} \right)^5} + {\left( {x - y} \right)^5} = 2x\left( {^5{C_0}{x^4}{ + ^5}{C_2}{x^2} \cdot {y^2}{ + ^5}{C_4}{y^4}} \right) \\
\]
Therefore, \[\{ {(x + y)^5} + {(x - y)^5}\} \] is equal to \[2x\left( {^5{C_0}{x^4}{ + ^5}{C_2}{x^2} \cdot {y^2}{ + ^5}{C_4}{y^4}} \right)\], which can be further simplified as follows,
\[
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {^5{C_0}{x^4}{ + ^5}{C_2}{x^2} \cdot {y^2}{ + ^5}{C_4}{y^4}} \right) \\
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {\dfrac{{5!}}{{0!\left( {5 - 0} \right)!}}{x^4} + \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}}{x^2}{y^2} + \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}}{y^4}} \right) \\
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {\dfrac{{5!}}{{5!}}{x^4} + \dfrac{{5!}}{{2!3!}}{x^2}{y^2} + \dfrac{{5!}}{{4!1!}}{y^4}} \right) \\
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {{x^4} + \dfrac{{5 \times 4 \times 3!}}{{\left( {2 \times 1} \right)3!}}{x^2}{y^2} + \dfrac{{5 \times 4!}}{{4!1!}}{y^4}} \right) \\
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {{x^4} + 10{x^2}{y^2} + 5{y^4}} \right) \\
\]
Therefore, \[\{ {(x + y)^5} + {(x - y)^5}\} \] is equal to \[2x\left( {{x^4} + 10{x^2}{y^2} + 5{y^4}} \right)\].
Now, we have to find the value of \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \].
If we compare, \[\{ {(x + y)^5} + {(x - y)^5}\} \] and \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \], we can easily find that value of \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \].
As, the value of \[\{ {(x + y)^5} + {(x - y)^5}\} \] is \[2x\left( {^5{C_0}{x^4}{ + ^5}{C_2}{x^2} \cdot {y^2}{ + ^5}{C_4}{y^4}} \right)\].
So, \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \] will be \[2\left( {\sqrt 2 } \right)\left( {^5{C_0}{{\sqrt 2 }^4}{ + ^5}{C_2}{{\sqrt 2 }^2} \cdot {1^2}{ + ^5}{C_4}{1^4}} \right)\], which can be further simplified as follows,
\[
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {^5{C_0}{{\sqrt 2 }^4}{ + ^5}{C_2}{{\left( {\sqrt 2 } \right)}^2} \cdot {1^2}{ + ^5}{C_4}{1^4}} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {\dfrac{{5!}}{{0!\left( {5 - 0} \right)!}}{{\left( {\sqrt 2 } \right)}^4} + \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}}{{\left( {\sqrt 2 } \right)}^2} + \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}}} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {\dfrac{{5!}}{{5!}}\left( 4 \right) + \dfrac{{5!}}{{2!3!}}\left( 2 \right) + \dfrac{{5!}}{{4!1!}}} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {4 + \dfrac{{5 \times 4 \times 3!}}{{\left( {2 \times 1} \right)3!}}\left( 2 \right) + \dfrac{{5 \times 4!}}{{4!1!}}} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {4 + 10\left( 2 \right) + 5} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 58\sqrt 2 \\
\]
Therefore, \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \] is equal to \[58\sqrt 2 \].
Note: We would like to be able to extend it when a binomial expression is elevated to a power 'n'. In doing this, the binomial theorem supports us. It transforms a phrase like that into a sequence.
The theorem that specifies the expansion of any power \[{\left( {a + b} \right)^m}\] of a binomial \[\left({a+b}\right)\] as a certain sum of products ${a_i}{b_j}$, such as \[{\left( {a + b} \right)^2}={a^2}+2ab+{b^2}\].
Complete step by step answer:
Given, the expression is \[\{ {(x + y)^5} + {(x - y)^5}\} \].
Now, substitute 5 for n, in the equation ${\left( {x + y} \right)^n} = \sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}} \cdot {y^r}} $.
So,
${\left( {x + y} \right)^5} = \sum\limits_{r = 0}^5 {^5{C_r}{x^{5 - r}} \cdot {y^r}} $, on expanding we get.
\[
{\left( {x + y} \right)^5}{ = ^5}{C_0}{x^5} \cdot {y^0}{ + ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ + ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ + ^5}{C_5}{x^0} \cdot {y^5} \\
{\left( {x + y} \right)^5}{ = ^5}{C_0}{x^5}{ + ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ + ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ + ^5}{C_5}{y^5} \\
\]………..(i)
Now, consider the expression, ${\left( {x - y} \right)^n} = {\left( { - 1} \right)^r}\sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}} \cdot {y^r}} $, substitute 5 for n, in the equation ${\left( {x - y} \right)^n} = {\left( { - 1} \right)^r}\sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}} \cdot {y^r}} $.
So,
${ \Rightarrow \left( {x - y} \right)^5} = {\left( { - 1} \right)^r}\sum\limits_{r = 0}^5 {^5{C_r}{x^{5 - r}} \cdot {y^r}} $, on expanding we will get the equation as,
\[
{\Rightarrow \left( {x - y} \right)^5} = {\left( { - 1} \right)^0}{\,^5}{C_0}{x^5} \cdot {y^0} + {\left( { - 1} \right)^1}{\,^5}{C_1}{x^4} \cdot y + {\left( { - 1} \right)^2}{\,^5}{C_2}{x^3} \cdot {y^2} + {\left( { - 1} \right)^3}{\,^5}{C_3}{x^2} \cdot {y^3} + {\left( { - 1} \right)^1}{\,^5}{C_4}x \cdot {y^4} + {\left( { - 1} \right)^1}{\,^5}{C_5}{x^0} \cdot {y^5} \\
{\Rightarrow \left( {x - y} \right)^5}{ = ^5}{C_0}{x^5} \cdot {y^0}{ - ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ - ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ - ^5}{C_5}{x^0} \cdot {y^5} \\
\]\[\Rightarrow {\left( {x - y} \right)^5}{ = ^5}{C_0}{x^5}{ - ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ - ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ - ^5}{C_5}{y^5}\]……………………….(ii)
Now, add the equation (i) and (ii).
\[
{\left( {x + y} \right)^5}{ = ^5}{C_0}{x^5}{ + ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ + ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ + ^5}{C_5}{y^5} \\
\underline {{{\left( {x - y} \right)}^5}{ = ^5}{C_0}{x^5}{ - ^5}{C_1}{x^4} \cdot y{ + ^5}{C_2}{x^3} \cdot {y^2}{ - ^5}{C_3}{x^2} \cdot {y^3}{ + ^5}{C_4}x \cdot {y^4}{ - ^5}{C_5}{y^5}} \\
{\left( {x + y} \right)^5} + {\left( {x - y} \right)^5} = 2\left( {^5{C_0}{x^5}{ + ^5}{C_2}{x^3} \cdot {y^2}{ + ^5}{C_4}x \cdot {y^4}} \right) \\
{\left( {x + y} \right)^5} + {\left( {x - y} \right)^5} = 2x\left( {^5{C_0}{x^4}{ + ^5}{C_2}{x^2} \cdot {y^2}{ + ^5}{C_4}{y^4}} \right) \\
\]
Therefore, \[\{ {(x + y)^5} + {(x - y)^5}\} \] is equal to \[2x\left( {^5{C_0}{x^4}{ + ^5}{C_2}{x^2} \cdot {y^2}{ + ^5}{C_4}{y^4}} \right)\], which can be further simplified as follows,
\[
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {^5{C_0}{x^4}{ + ^5}{C_2}{x^2} \cdot {y^2}{ + ^5}{C_4}{y^4}} \right) \\
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {\dfrac{{5!}}{{0!\left( {5 - 0} \right)!}}{x^4} + \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}}{x^2}{y^2} + \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}}{y^4}} \right) \\
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {\dfrac{{5!}}{{5!}}{x^4} + \dfrac{{5!}}{{2!3!}}{x^2}{y^2} + \dfrac{{5!}}{{4!1!}}{y^4}} \right) \\
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {{x^4} + \dfrac{{5 \times 4 \times 3!}}{{\left( {2 \times 1} \right)3!}}{x^2}{y^2} + \dfrac{{5 \times 4!}}{{4!1!}}{y^4}} \right) \\
\Rightarrow \{ {(x + y)^5} + {(x - y)^5}\} = 2x\left( {{x^4} + 10{x^2}{y^2} + 5{y^4}} \right) \\
\]
Therefore, \[\{ {(x + y)^5} + {(x - y)^5}\} \] is equal to \[2x\left( {{x^4} + 10{x^2}{y^2} + 5{y^4}} \right)\].
Now, we have to find the value of \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \].
If we compare, \[\{ {(x + y)^5} + {(x - y)^5}\} \] and \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \], we can easily find that value of \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \].
As, the value of \[\{ {(x + y)^5} + {(x - y)^5}\} \] is \[2x\left( {^5{C_0}{x^4}{ + ^5}{C_2}{x^2} \cdot {y^2}{ + ^5}{C_4}{y^4}} \right)\].
So, \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \] will be \[2\left( {\sqrt 2 } \right)\left( {^5{C_0}{{\sqrt 2 }^4}{ + ^5}{C_2}{{\sqrt 2 }^2} \cdot {1^2}{ + ^5}{C_4}{1^4}} \right)\], which can be further simplified as follows,
\[
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {^5{C_0}{{\sqrt 2 }^4}{ + ^5}{C_2}{{\left( {\sqrt 2 } \right)}^2} \cdot {1^2}{ + ^5}{C_4}{1^4}} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {\dfrac{{5!}}{{0!\left( {5 - 0} \right)!}}{{\left( {\sqrt 2 } \right)}^4} + \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}}{{\left( {\sqrt 2 } \right)}^2} + \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}}} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {\dfrac{{5!}}{{5!}}\left( 4 \right) + \dfrac{{5!}}{{2!3!}}\left( 2 \right) + \dfrac{{5!}}{{4!1!}}} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {4 + \dfrac{{5 \times 4 \times 3!}}{{\left( {2 \times 1} \right)3!}}\left( 2 \right) + \dfrac{{5 \times 4!}}{{4!1!}}} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 2\left( {\sqrt 2 } \right)\left( {4 + 10\left( 2 \right) + 5} \right) \\
\Rightarrow \{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} = 58\sqrt 2 \\
\]
Therefore, \[\{ {(\sqrt 2 + 1)^5} + {(\sqrt 2 - 1)^5}\} \] is equal to \[58\sqrt 2 \].
Note: We would like to be able to extend it when a binomial expression is elevated to a power 'n'. In doing this, the binomial theorem supports us. It transforms a phrase like that into a sequence.
The theorem that specifies the expansion of any power \[{\left( {a + b} \right)^m}\] of a binomial \[\left({a+b}\right)\] as a certain sum of products ${a_i}{b_j}$, such as \[{\left( {a + b} \right)^2}={a^2}+2ab+{b^2}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

